Mostrar el registro sencillo del ítem

dc.contributor.authorKowalski, Andrew 
dc.contributor.authorArgüeso, Daniel
dc.date.accessioned2012-11-16T12:52:19Z
dc.date.available2012-11-16T12:52:19Z
dc.date.issued2011
dc.identifier.citationKowalski, A. S.; Argüeso, D. Scalar arguments of the mathematical functions defining molecular and turbulent transport of heat and mass in compressible fluids. Tellus B 63(5): 1059-1066 (2011). [http://hdl.handle.net/10481/22399]en_US
dc.identifier.issn0280-6509
dc.identifier.issn1600-0889 (online)
dc.identifier.otherDOI: 10.1111/j.1600-0889.2011.00579.x
dc.identifier.urihttp://hdl.handle.net/10481/22399
dc.description.abstractThe advection–diffusion equations defining control volume conservation laws in micrometeorological research are analysed to resolve discrepancies in their appropriate scalar variables for heat and mass transport. A scalar variable that is conserved during vertical motions enables the interpretation of turbulent mixing as ‘diffusion’. Gas-phase heat advection is shown to depend on gradients in the potential temperature (θ), not the temperature (T). Since conduction and radiation depend on T, advection–diffusion of heat depends on gradients of both θ and T. Conservation of θ (the first Law of Thermodynamics) requires including a pressure covariance term in the definition of the turbulent heat flux. Mass advection and diffusion are universally agreed to depend directly on gradients in the gas ‘concentration’ (c), a nonetheless ambiguous term. Depending upon author, c may be defined either as a dimensionless proportion or as a dimensional density, with non-trivial differences for the gas phase. Analyses of atmospheric law, scalar conservation and similarity theory demonstrate that mass advection–diffusion in gases depends on gradients, not in density but rather in a conserved proportion. Flux-tower researchers are encouraged to respect the meteorological tradition of writing conservation equations in terms of scalar variables that are conserved through simple air motions.en_US
dc.description.sponsorshipThe authors received funding support from Andalusian regional government project GEOCARBO (P08-RNM-3721), the National Institute for Agrarian Research and Technology (INIA; SUM2006–00010-00–00), the Spanish flux-tower network CARBORED-ES (Science Ministry project CGL2010- 22193-C04–02), and the European Commission collaborative project GHG Europe (FP7/2007-2013; grant agreement 244122).en_US
dc.language.isoengen_US
dc.publisherJohn Wley and Sonsen_US
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/2007-2013en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 License
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/
dc.subjectScalaren_US
dc.subjectMathematical functionsen_US
dc.subjectHeat en_US
dc.subjectMass en_US
dc.subjectTransporten_US
dc.titleScalar arguments of the mathematical functions defining molecular and turbulent transport of heat and mass in compressible fluidsen_US
dc.typejournal articleen_US
dc.rights.accessRightsopen accessen_US


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License