Mostrar el registro sencillo del ítem

dc.contributor.authorRos Vidal, Eduardo 
dc.contributor.authorCarrillo Sánchez, Richard Rafael 
dc.contributor.authorMartínez Ortigosa, Eva 
dc.contributor.authorBarbour, Boris
dc.contributor.authorAgís, Rodrigo
dc.date.accessioned2012-11-16T09:35:43Z
dc.date.available2012-11-16T09:35:43Z
dc.date.issued2006-12
dc.identifier.citationRos, E.; Carrillo, R.; Ortigosa, E. M.; Barbour, B.; Agís, R. Event-driven simulation scheme for spiking neural networks using lookup tables to characterize neuronal dynamics. Neural Computation 18(12): 2959-2993 (2006). [http://hdl.handle.net/10481/22397]en_US
dc.identifier.issn0899-7667
dc.identifier.otherdoi:10.1162/neco.2006.18.12.2959
dc.identifier.otherPMID: 17052155
dc.identifier.urihttp://hdl.handle.net/10481/22397
dc.description.abstractNearly all neuronal information processing and interneuronal communication in the brain involves action potentials, or spikes, which drive the short-term synaptic dynamics of neurons, but also their long-term dynamics, via synaptic plasticity. In many brain structures, action potential activity is considered to be sparse. This sparseness of activity has been exploited to reduce the computational cost of large-scale network simulations, through the development of event-driven simulation schemes. However, existing event-driven simulations schemes use extremely simplified neuronal models. Here, we implement and evaluate critically an event-driven algorithm (ED-LUT) that uses precalculated look-up tables to characterize synaptic and neuronal dynamics. This approach enables the use of more complex (and realistic) neuronal models or data in representing the neurons, while retaining the advantage of high-speed simulation. We demonstrate the method's application for neurons containing exponential synaptic conductances, thereby implementing shunting inhibition, a phenomenon that is critical to cellular computation. We also introduce an improved two-stage event-queue algorithm, which allows the simulations to scale efficiently to highly connected networks with arbitrary propagation delays. Finally, the scheme readily accommodates implementation of synaptic plasticity mechanisms that depend on spike timing, enabling future simulations to explore issues of long-term learning and adaptation in large-scale networks.en_US
dc.description.sponsorshipThis work has been supported by the EU projects SpikeFORCE (IST-2001-35271), SENSOPAC (IST-028056) and the Spanish National Grant (DPI-2004-07032)en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.relationinfo:eu-repo/grantAgreement/EC/FP6/028056es_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 License
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/
dc.subjectComputer simulation en_US
dc.subjectNeurologicalen_US
dc.subjectNeural networksen_US
dc.subjectComputeren_US
dc.subjectNonlinear dynamicsen_US
dc.titleEvent-driven simulation scheme for spiking neural networks using lookup tables to characterize neuronal dynamicsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License