| dc.contributor.author | Han, Teng | |
| dc.contributor.author | Goswami, Sukanya | |
| dc.contributor.author | Hu, Yang | |
| dc.contributor.author | Tang, Fanying | |
| dc.contributor.author | Zafra, María Paz | |
| dc.contributor.author | Murphy, Charles | |
| dc.contributor.author | Cao, Zhen | |
| dc.contributor.author | Poirier, John T. | |
| dc.contributor.author | Khurana, Ekta | |
| dc.contributor.author | Elemento, Olivier | |
| dc.contributor.author | Hechtman, Jaclyn F. | |
| dc.contributor.author | Ganesh, Karuna | |
| dc.contributor.author | Yaeger, Rona | |
| dc.contributor.author | Dow, Lukas E. | |
| dc.date.accessioned | 2026-01-27T12:40:01Z | |
| dc.date.available | 2026-01-27T12:40:01Z | |
| dc.date.issued | 2020-10 | |
| dc.identifier.citation | Han, Teng et al. Lineage Reversion Drives WNT Independence in Intestinal Cancer. Cancer Discovery . 2020;10(10):1590-1609. DOI: 10.1158/2159-8290.CD-19-1536 | es_ES |
| dc.identifier.uri | https://hdl.handle.net/10481/110356 | |
| dc.description | This work was supported by a Research Scholar Award
from the American Cancer Society (RSG-17-202-01-TBG), a project
grant from the NIH/NCI (1R01CA222517-01A1), project grants
from the Starr Cancer Consortium (#I10-0095 and #I11-0040) and
a Stand Up To Cancer Colorectal Cancer Dream Team Translational Research Grant (SU2C-AACR-DT22-17). Research grants are administered by the American Association for
Cancer Research, a scientific partner of SU2C. M.P. Zafra is supported in part by NCI
grant NIH T32 CA203702. | es_ES |
| dc.description.abstract | The WNT pathway is a fundamental regulator of intestinal homeostasis, and hyperactivation of WNT signaling is the major oncogenic driver in colorectal cancer. To date, there are no described mechanisms that bypass WNT dependence in intestinal tumors. Here, we show that although WNT suppression blocks tumor growth in most organoid and in vivo colorectal cancer models, the accumulation of colorectal cancer-associated genetic alterations enables drug resistance and WNT-independent growth. In intestinal epithelial cells harboring mutations in KRAS or BRAF, together with disruption of TP53 and SMAD4, transient TGFβ exposure drives YAP/TAZ-dependent transcriptional reprogramming and lineage reversion. Acquisition of embryonic intestinal identity is accompanied by a permanent loss of adult intestinal lineages, and long-term WNT-independent growth. This work identifies genetic and microenvironmental factors that drive WNT inhibitor resistance, defines a new mechanism for WNT-independent colorectal cancer growth, and reveals how integration of associated genetic alterations and extracellular signals can overcome lineage-dependent oncogenic programs. SIGNIFICANCE: Colorectal and intestinal cancers are driven by mutations in the WNT pathway, and drugs aimed at suppressing WNT signaling are in active clinical development. Our study identifies a mechanism of acquired resistance to WNT inhibition and highlights a potential strategy to target those drug-resistant cells | es_ES |
| dc.description.sponsorship | American Cancer Society (RSG-17-202-01-TBG) | es_ES |
| dc.description.sponsorship | NIH/NCI (1R01CA222517-01A1) | es_ES |
| dc.description.sponsorship | Starr Cancer Consortium (#I10-0095 and #I11-0040) | es_ES |
| dc.description.sponsorship | Stand Up To Cancer Colorectal Cancer Dream Team Translational Research Grant (SU2C-AACR-DT22-17) | es_ES |
| dc.description.sponsorship | American Association for Cancer Research, SU2C | es_ES |
| dc.description.sponsorship | NCI grant NIH T32 CA203702 | es_ES |
| dc.language.iso | eng | es_ES |
| dc.publisher | American Association for Cancer Research | es_ES |
| dc.subject | WNT | es_ES |
| dc.subject | Colorectal cancer | es_ES |
| dc.subject | Single cell RNA sequencing | es_ES |
| dc.title | Lineage Reversion Drives WNT Independence in Intestinal Cancer | es_ES |
| dc.type | journal article | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.identifier.doi | 10.1158/2159-8290.CD-19-1536 | |
| dc.type.hasVersion | VoR | es_ES |