• français 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Voir le document 
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Educación Física y Deportiva
  • DEFD - Artículos
  • Voir le document
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Educación Física y Deportiva
  • DEFD - Artículos
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Profiling high performers in elite women’s basketball: Functional roles and normative benchmarks from 10 seasons of Spanish First Division data

[PDF] Profiling high performers in elite women’s basketball.pdf (1.073Mo)
Identificadores
URI: https://hdl.handle.net/10481/110354
DOI: 10.1080/02640414.2025.2555559
ISSN: 0264-0414
ISSN: 1466-447X
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Statistiques d'usage de visualisation
Metadatos
Afficher la notice complète
Auteur
Courel Ibáñez, Javier; Piñar López, María Isabel; Contreras García, José Miguel; Ibáñez, Sergio José
Editorial
Taylor & Francis
Materia
Deportes de equipo
 
Identificación de talentos
 
Baloncesto femenino
 
Team sports
 
Talent identification
 
Female basketball
 
Date
2025-08-25
Referencia bibliográfica
Publisher version: Courel-Ibáñez, J., Piñar López, MI, Contreras-García, JM, y J. Ibáñez, S. (2025). Profiling high performers in elite women’s basketball: Functional roles and normative benchmarks from 10 seasons of Spanish First Division data. Journal of Sports Sciences, 43(22), 2764–2775. https://doi.org/10.1080/02640414.2025.2555559
Patrocinador
Universidad de Granada, UECUMel (UCE-PP2024-02) y GR24133
Résumé
Despite significant advances in basketball analytics, professional women’s leagues remain underrepresented in performance research. Understanding normative performance benchmarks in professional women’s basketball is essential for informed player development, scouting, and tactical planning; however, this area remains underexplored. This study analysed ten seasons (2012–2022) of performance data from 609 players, Spain’s top-tier women’s league (LF Endesa). Principal Component Analysis (PCA) confirmed the adequacy of 15 key indicators normalized per minute. A two-step clustering approach identified six functional player profiles (Primary Post, Secondary Post, Playmaker, 3&D Specialist, Role Player and Versatile). Players were further stratified into high, mid, and low performers within each role using z-score tertiles. Linear mixed models revealed that High performers consistently outscored Low performers in key metrics such as 2-point and 3-point field goals made, assists, and defensive rebounds (p < 0.01). Convergent validity was supported by the overrepresentation of High performers among First Team selections and players from top-ranked teams. Normative values for each role and performance tier are presented, providing a valuable reference for talent identification and role-based benchmarking in professional women’s basketball. Future research should integrate contextual variables and advanced tracking data to refine these classifications across broader competitive settings.
Colecciones
  • DEFD - Artículos

Mon compte

Ouvrir une sessionS'inscrire

Parcourir

Tout DIGIBUGCommunautés et CollectionsPar date de publicationAuteursTitresSujetsFinanciaciónPerfil de autor UGRCette collectionPar date de publicationAuteursTitresSujetsFinanciación

Statistiques

Statistiques d'usage de visualisation

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contactez-nous | Faire parvenir un commentaire