Afficher la notice abrégée

dc.contributor.advisorJonkers, Jos
dc.contributor.authorAnnunziato, Stefano
dc.contributor.authorLutz, Catrin
dc.contributor.authorHenneman, Linda
dc.contributor.authorBhin, Jinhyuk
dc.contributor.authorWong, Kim
dc.contributor.authorSiteur, Bjørn
dc.contributor.authorGerwen, Bas van
dc.contributor.authorde Korte-Grimmerink, Renske
dc.contributor.authorZafra, Maria Paz
dc.contributor.authorSchatoff, Emma M
dc.contributor.authorDrenth, Anne Paulien
dc.contributor.authorvan der Burg, Eline
dc.contributor.authorEijkman, Timo
dc.contributor.authorMukherjee1, Siddhartha2
dc.contributor.authorBoroviak, Katharina
dc.contributor.authorWessels, Lodewyk FA
dc.contributor.authorvan de Ven, Marieke
dc.contributor.authorHuijbers, Ivo J
dc.contributor.authorAdams, David J
dc.contributor.authorDow, Lukas E
dc.contributor.authorJonkers, Jos
dc.date.accessioned2026-01-27T11:05:34Z
dc.date.available2026-01-27T11:05:34Z
dc.date.issued2020-03
dc.identifier.citationEMBO Journal, 2020, 2;39(5):e102169es_ES
dc.identifier.urihttps://hdl.handle.net/10481/110328
dc.description.abstractGenetically engineered mouse models (GEMMs) of cancer have proven to be of great value for basic and translational research. Although CRISPR-based gene disruption offers a fast-track approach for perturbing gene function and circumvents certain limitations of standard GEMM development, it does not provide a flexible platform for recapitulating clinically relevant missense mutations in vivo. To this end, we generated knock-in mice with Cre-conditional expression of a cytidine base editor and tested their utility for precise somatic engineering of missense mutations in key cancer drivers. Upon intraductal delivery of sgRNA-encoding vectors, we could install point mutations with high efficiency in one or multiple endogenous genes in situ and assess the effect of defined allelic variants on mammary tumorigenesis. While the system also produces bystander insertions and deletions that can stochastically be selected for when targeting a tumor suppressor gene, we could effectively recapitulate oncogenic nonsense mutations. We successfully applied this system in a model of triple-negative breast cancer, providing the proof of concept for extending this flexible somatic base editing platform to other tissues and tumor types.es_ES
dc.description.sponsorship1. Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands. 2. Cancer Genomics Netherlands, The Netherlands Cancer Institute, Amsterdam, The Netherlands. 3. Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, Amsterdam, The Netherlands. 4. Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands. 5. Wellcome Trust Sanger Institute, Cambridge, UK. 6. Preclinical Intervention Unit, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, Amsterdam, The Netherlands. 7. Division of Hematology and Medical Oncology, Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA. 8. Weill Cornell/Rockefeller/Sloan Kettering Tri-I MD-PhD Program, New York, NY, USA. 9. Department of Biochemistry, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.es_ES
dc.language.isoenges_ES
dc.publisherEMBO Presses_ES
dc.subjectCRISPR-Cas9es_ES
dc.subjectbase editinges_ES
dc.subjectbreast canceres_ES
dc.subjectgenetically engineered mouse modelses_ES
dc.subjectintraductal injectionses_ES
dc.titleIn situ CRISPR-Cas9 base editing for the development of genetically engineered mouse models of breast canceres_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.15252/embj.2019102169


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée