Mostrar el registro sencillo del ítem

dc.contributor.authorDing, Weiping
dc.contributor.authorPedrycz, Witold
dc.contributor.authorTriguero, Isaac
dc.contributor.authorCao, Zehong
dc.contributor.authorLin, Chin-Teng
dc.date.accessioned2026-01-26T13:42:23Z
dc.date.available2026-01-26T13:42:23Z
dc.date.issued2021
dc.identifier.citationW. Ding, W. Pedrycz, I. Triguero, Z. Cao and C. -T. Lin, "Multigranulation Supertrust Model for Attribute Reduction," in IEEE Transactions on Fuzzy Systems, vol. 29, no. 6, pp. 1395-1408, June 2021, doi: 10.1109/TFUZZ.2020.2975152es_ES
dc.identifier.issn1063-6706
dc.identifier.issn1941-0034
dc.identifier.urihttps://hdl.handle.net/10481/110290
dc.description.abstractAs big data often contains a significant amount of uncertain, unstructured, and imprecise data that are structurally complex and incomplete, traditional attribute reduction methods are less effective when applied to large-scale incomplete information systems to extract knowledge. Multigranular computing provides a powerful tool for use in big data analysis conducted at different levels of information granularity. In this article, we present a novel multigranulation supertrust fuzzy-rough set-based attribute reduction (MSFAR) algorithm to support the formation of hierarchies of information granules of higher types and higher orders, which addresses newly emerging data mining problems in big data analysis. First, a multigranulation supertrust model based on the valued tolerance relation is constructed to identify the fuzzy similarity of the changing knowledge granularity with multimodality attributes. Second, an ensemble consensus compensatory scheme was adopted to calculate the multigranular trust degree based on the reputation at different granularities to create reasonable subproblems with different granulation levels. Third, an equilibrium method of multigranular coevolution is employed to ensure a wide range of balancing of exploration and exploitation, and this strategy can classify super elitists' preferences and detect noncooperative behaviors with a global convergence ability and high search accuracy. The experimental results demonstrate that the MSFAR algorithm achieves a high performance in addressing uncertain and fuzzy attribute reduction problems with a large number of multigranularity variableses_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMultigranulation super-trust modeles_ES
dc.subjectFuzzy-rough attribute reductiones_ES
dc.subjectValued tolerance relationes_ES
dc.titleMultigranulation Supertrust Model for Attribute Reductiones_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/TFUZZ.2020.2975152
dc.type.hasVersionAOes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional