Mostrar el registro sencillo del ítem

dc.contributor.authorDing, Weiping
dc.contributor.authorPedrycz, Witold
dc.contributor.authorTriguero, Isaac
dc.contributor.authorCao, Zehong
dc.contributor.authorLin, Chin-Teng
dc.date.accessioned2026-01-26T13:41:15Z
dc.date.available2026-01-26T13:41:15Z
dc.date.issued2021
dc.identifier.citationPublished version: Ding, Weiping et al. Multigranulation supertrust model for attribute reduction. IEEE Transactions on Fuzzy Systems. Volume: 29, Issue: 6, June 2021. DOI: 10.1109/TFUZZ.2020.2975152es_ES
dc.identifier.urihttps://hdl.handle.net/10481/110289
dc.descriptionThis work was supported in part by the National Natural Science Foundation of China under Grant 61300167 and Grant 61976120, in part by the Natural Science Foundation of Jiangsu Province under Grant BK20151274 and Grant BK20191445, in part by the Six Talent Peaks Project of Jiangsu Province under Grant XYDXXJS-048, in part by the Jiangsu Provincial Government Scholarship Program under Grant JS-2016-065, and sponsored by Qing Lan Project of Jiangsu Province.es_ES
dc.description.abstractAs big data often contains a significant amount of uncertain, unstructured, and imprecise data that are structurally complex and incomplete, traditional attribute reduction methods are less effective when applied to large-scale incomplete information systems to extract knowledge. Multigranular computing provides a powerful tool for use in big data analysis conducted at different levels of information granularity. In this article, we present a novel multigranulation supertrust fuzzy-rough set-based attribute reduction (MSFAR) algorithm to support the formation of hierarchies of information granules of higher types and higher orders, which addresses newly emerging data mining problems in big data analysis. First, a multigranulation supertrust model based on the valued tolerance relation is constructed to identify the fuzzy similarity of the changing knowledge granularity with multimodality attributes. Second, an ensemble consensus compensatory scheme was adopted to calculate the multigranular trust degree based on the reputation at different granularities to create reasonable subproblems with different granulation levels. Third, an equilibrium method of multigranular coevolution is employed to ensure a wide range of balancing of exploration and exploitation, and this strategy can classify super elitists' preferences and detect noncooperative behaviors with a global convergence ability and high search accuracy. The experimental results demonstrate that the MSFAR algorithm achieves a high performance in addressing uncertain and fuzzy attribute reduction problems with a large number of multigranularity variables.es_ES
dc.description.sponsorshipNational Natural Science Foundation of China 61300167, 61976120es_ES
dc.description.sponsorshipNatural Science Foundation of Jiangsu Province BK20151274, BK20191445es_ES
dc.description.sponsorshipSix Talent Peaks Project of Jiangsu Province XYDXXJS-048es_ES
dc.description.sponsorshipJiangsu Provincial Government Scholarship Program JS-2016-065es_ES
dc.description.sponsorshipQing Lan Project of Jiangsu Provincees_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMultigranulation super-trust modeles_ES
dc.subjectfuzzy-rough attribute reductiones_ES
dc.subjectvalued tolerance relationes_ES
dc.subjectensemble consensus compensatory schemees_ES
dc.titleMultigranulation supertrust model for attribute reductiones_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/TFUZZ.2020.2975152
dc.type.hasVersionAMes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional