• français 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Voir le document 
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ingeniería de Computadores, Automática y Robótica
  • DICAR - Artículos
  • Voir le document
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ingeniería de Computadores, Automática y Robótica
  • DICAR - Artículos
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimizing Hearthstone agents using an evolutionary algorithm

[PDF] Versión final (1.912Mo)
Identificadores
URI: https://hdl.handle.net/10481/110288
DOI: 10.1016/j.knosys.2019.105032
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Statistiques d'usage de visualisation
Metadatos
Afficher la notice complète
Auteur
García Sánchez, Pablo; Tonda, Alberto; Fernández Leiva, Antonio J.; Cotta, Carlos
Editorial
Elsevier
Materia
hearthstone
 
evolutionary algorithms
 
artificial intelligence
 
Date
2020-01-20
Referencia bibliográfica
García-Sánchez, P., Tonda, A., Fernández-Leiva, A. J., & Cotta, C. (2020). Optimizing hearthstone agents using an evolutionary algorithm. Knowledge-Based Systems, 188, 105032. https://doi.org/10.1016/j.knosys.2019.105032
Patrocinador
SPIP2017-02116, Spain; EphemeCH, Spain (TIN2014-56494-C4-{1,3}-P); DeepBio, Spain (TIN2017-85727-C4-{1,2}-P); TEC2015-68752, Spain; Universidad de Cádiz
Résumé
Digital collectible card games are not only a growing part of the video game industry, but also an interesting research area for the field of computational intelligence. This game genre allows researchers to deal with hidden information, uncertainty and planning, among other aspects. This paper proposes the use of evolutionary algorithms (EAs) to develop agents who play a card game, Hearthstone, by optimizing a data-driven decision-making mechanism that takes into account all the elements currently in play. Agents feature self-learning by means of a competitive coevolutionary training approach, whereby no external sparring element defined by the user is required for the optimization process. One of the agents developed through the proposed approach was runner-up (best 6%) in an international Hearthstone Artificial Intelligence (AI) competition. Our proposal performed remarkably well, even when it faced state-of-the-art techniques that attempted to take into account future game states, such as Monte-Carlo Tree search. This outcome shows how evolutionary computation could represent a considerable advantage in developing AIs for collectible card games such as Hearthstone.
Colecciones
  • DICAR - Artículos

Mon compte

Ouvrir une sessionS'inscrire

Parcourir

Tout DIGIBUGCommunautés et CollectionsPar date de publicationAuteursTitresSujetsFinanciaciónPerfil de autor UGRCette collectionPar date de publicationAuteursTitresSujetsFinanciación

Statistiques

Statistiques d'usage de visualisation

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contactez-nous | Faire parvenir un commentaire