Mostrar el registro sencillo del ítem

dc.contributor.authorCobo Muelas, Ederson Steven
dc.contributor.authorLópez Serrano, Pablito Marcelo
dc.contributor.authorWehenkel, Christian
dc.contributor.authorManzo Delgado, Lilia de Lourdes
dc.contributor.authorMartínez-López, Javier
dc.date.accessioned2026-01-26T12:56:10Z
dc.date.available2026-01-26T12:56:10Z
dc.date.issued2026-01-23
dc.identifier.citationCobo-Muelas, E. S., López-Serrano, P. M., Wehenkel, C., Manzo-Delgado, L. d. L., & Martínez-López, J. (2026). Wildfire Detection in the Iztaccíhuatl-Popocatépetl Protected Natural Area Using Spectral Indices and Logistic Regression. Fire, 9(2), 50. https://doi.org/10.3390/fire9020050es_ES
dc.identifier.urihttps://hdl.handle.net/10481/110284
dc.description.abstractWildfires are part of terrestrial ecosystem processes; however, their frequency and intensity have recently increased due to both natural and anthropogenic factors. Geospatial data are essential for analyzing land cover changes at high spatial resolution, making the development of tools that use this information to detect burned areas particularly important, especially in regions of high ecological value. This study aimed to detect burned areas within the Iztaccíhuatl–Popocatépetl Protected Natural Area in central Mexico using a logistic regression model based on spectral variables such as NDVI, RBRc, and SWIR2 derived from Sentinel-2 imagery. The agreement between observed and classified data yielded Kappa coefficients and overall accuracy values of 0.79. Model performance varied with probability threshold: low thresholds achieved higher metrics, while high thresholds produced a more conservative delineation that was spatially more coherent with the reference polygons, prioritizing pixels with higher probability of being affected and generating maps more consistent with actual burned areas. Overall, the model performed well in detecting burned areas, providing a useful tool for fire monitoring. However, it is recommended to conduct analyses by vegetation type to increase model accuracy, as phenological variability associated with vegetation types can influence spectral responses and reduce precision.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectRegression modeles_ES
dc.subjectRemote sensing es_ES
dc.subjectSpectral indiceses_ES
dc.titleWildfire Detection in the Iztaccíhuatl-Popocatépetl Protected Natural Area Using Spectral Indices and Logistic Regressiones_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/fire9020050
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional