Mostrar el registro sencillo del ítem
Circulating extracellular vesicle isomiR signatures predict therapy response in patients with multiple myeloma
| dc.contributor.author | Gómez Martín, Cristina | |
| dc.contributor.author | Drees, Esther E. E. | |
| dc.contributor.author | Van Eijndhoven, Monique A. J. | |
| dc.contributor.author | Groenewegen, Nils | |
| dc.contributor.author | Wang, Steven | |
| dc.contributor.author | Verkuijlen, Sandra AWM | |
| dc.contributor.author | Van Weering, Jan R. T. | |
| dc.contributor.author | Aparicio-Puerta, Ernesto | |
| dc.contributor.author | Bosch, Leontien | |
| dc.contributor.author | Frerichs, Kris A. | |
| dc.contributor.author | Verkleij, Christie P. M. | |
| dc.contributor.author | Kersten, Marie J. | |
| dc.contributor.author | Zijlstra, Josée M. | |
| dc.contributor.author | De Jong, Daphne | |
| dc.contributor.author | Groothuis-Oudshoorn, Catharina G. M. | |
| dc.contributor.author | Hackenberg, Michael | |
| dc.contributor.author | Pegtel, D. Michiel | |
| dc.date.accessioned | 2026-01-26T12:50:46Z | |
| dc.date.available | 2026-01-26T12:50:46Z | |
| dc.date.issued | 2025-10-21 | |
| dc.identifier.citation | Gómez Martín, Cristina et al. Circulating extracellular vesicle isomiR signatures predict therapy response in patients with multiple myeloma. Cell Reports Medicine Volume 6, Issue 10, 21 October 2025, 102358. https://doi.org/10.1016/j.xcrm.2025.102358 | es_ES |
| dc.identifier.uri | https://hdl.handle.net/10481/110283 | |
| dc.description | This work was supported by Stichting Cancer Center Amsterdam (CCA2021-9-77, CCA2023-9-93) to C.G.-M., Spanish Government (AGL2017-88702-C2-2-R) to M.H., multiple grants awarded to D.M.P., including NWO Perspectief Cancer-ID, TKI-health Holland AQrate, and Stichting NEXTGEN HIGHTECH Program (Biomed02). | es_ES |
| dc.description.abstract | Multiple myeloma (MM) is a plasma cell neoplasm characterized by high inter- and intra-patient clonal heterogeneity, leading to high variability in therapeutic responses. Minimally invasive biomarkers that predict response may help personalize treatment decisions. IsoSeek, a single-nucleotide resolution small RNA sequencing method can profile thousands of microRNAs (miRNAs) and their variants (isomiRs) from patient plasma-purified extracellular vesicles (EVs). Machine learning-generated miRNA/isomiR classifiers accurately predict therapeutic response in relapsed/refractory MM (RRMM) patients receiving daratumumab-containing regimens, achieving an area-under-the-curve of 0.98 (95% confidence interval [CI]:0.94–1.00). A classifier signature with the plasma cell-selective miR-148-3p, predicts durable response (≥6 months), progression-free (hazard ratio [HR]: 33.09, 95% CI: 4.2–262, p < 0.001), and overall survival (HR: 3.81, 95% CI: 1.05–13.99, p < 0.05). Targetome analysis connects the prognostic classifier to established MM drug targets BCL2 and MYC suggesting biological relevance. Thus, EV-isomiR sequencing in MM patients offers a tumor-naïve alternative to an invasive bone-marrow biopsy for predicting treatment outcome. | es_ES |
| dc.description.sponsorship | Stichting Cancer Center Amsterdam (CCA2021-9-77, CCA2023-9-93) | es_ES |
| dc.description.sponsorship | Spanish Government (AGL2017-88702-C2-2-R) | es_ES |
| dc.description.sponsorship | NWO Perspectief Cancer-ID, TKI-health Holland AQrate, Stichting NEXTGEN HIGHTECH Program | es_ES |
| dc.language.iso | eng | es_ES |
| dc.publisher | Elsevier | es_ES |
| dc.rights | Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License | es_ES |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
| dc.subject | multiple myeloma | es_ES |
| dc.subject | liquid biopsy | es_ES |
| dc.subject | extracellular vesicles | es_ES |
| dc.subject | miRNAs | es_ES |
| dc.subject | isomiR modelling | es_ES |
| dc.subject | response prediction | es_ES |
| dc.subject | personalized therapy | es_ES |
| dc.title | Circulating extracellular vesicle isomiR signatures predict therapy response in patients with multiple myeloma | es_ES |
| dc.type | journal article | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.identifier.doi | 10.1016/j.xcrm.2025.102358 | |
| dc.type.hasVersion | VoR | es_ES |
