Mostrar el registro sencillo del ítem

dc.contributor.authorGómez Martín, Cristina
dc.contributor.authorDrees, Esther E. E.
dc.contributor.authorVan Eijndhoven, Monique A. J.
dc.contributor.authorGroenewegen, Nils
dc.contributor.authorWang, Steven
dc.contributor.authorVerkuijlen, Sandra AWM
dc.contributor.authorVan Weering, Jan R. T.
dc.contributor.authorAparicio-Puerta, Ernesto
dc.contributor.authorBosch, Leontien
dc.contributor.authorFrerichs, Kris A.
dc.contributor.authorVerkleij, Christie P. M.
dc.contributor.authorKersten, Marie J.
dc.contributor.authorZijlstra, Josée M.
dc.contributor.authorDe Jong, Daphne
dc.contributor.authorGroothuis-Oudshoorn, Catharina G. M.
dc.contributor.authorHackenberg, Michael 
dc.contributor.authorPegtel, D. Michiel
dc.date.accessioned2026-01-26T12:50:46Z
dc.date.available2026-01-26T12:50:46Z
dc.date.issued2025-10-21
dc.identifier.citationGómez Martín, Cristina et al. Circulating extracellular vesicle isomiR signatures predict therapy response in patients with multiple myeloma. Cell Reports Medicine Volume 6, Issue 10, 21 October 2025, 102358. https://doi.org/10.1016/j.xcrm.2025.102358es_ES
dc.identifier.urihttps://hdl.handle.net/10481/110283
dc.descriptionThis work was supported by Stichting Cancer Center Amsterdam (CCA2021-9-77, CCA2023-9-93) to C.G.-M., Spanish Government (AGL2017-88702-C2-2-R) to M.H., multiple grants awarded to D.M.P., including NWO Perspectief Cancer-ID, TKI-health Holland AQrate, and Stichting NEXTGEN HIGHTECH Program (Biomed02).es_ES
dc.description.abstractMultiple myeloma (MM) is a plasma cell neoplasm characterized by high inter- and intra-patient clonal heterogeneity, leading to high variability in therapeutic responses. Minimally invasive biomarkers that predict response may help personalize treatment decisions. IsoSeek, a single-nucleotide resolution small RNA sequencing method can profile thousands of microRNAs (miRNAs) and their variants (isomiRs) from patient plasma-purified extracellular vesicles (EVs). Machine learning-generated miRNA/isomiR classifiers accurately predict therapeutic response in relapsed/refractory MM (RRMM) patients receiving daratumumab-containing regimens, achieving an area-under-the-curve of 0.98 (95% confidence interval [CI]:0.94–1.00). A classifier signature with the plasma cell-selective miR-148-3p, predicts durable response (≥6 months), progression-free (hazard ratio [HR]: 33.09, 95% CI: 4.2–262, p < 0.001), and overall survival (HR: 3.81, 95% CI: 1.05–13.99, p < 0.05). Targetome analysis connects the prognostic classifier to established MM drug targets BCL2 and MYC suggesting biological relevance. Thus, EV-isomiR sequencing in MM patients offers a tumor-naïve alternative to an invasive bone-marrow biopsy for predicting treatment outcome.es_ES
dc.description.sponsorshipStichting Cancer Center Amsterdam (CCA2021-9-77, CCA2023-9-93)es_ES
dc.description.sponsorshipSpanish Government (AGL2017-88702-C2-2-R)es_ES
dc.description.sponsorshipNWO Perspectief Cancer-ID, TKI-health Holland AQrate, Stichting NEXTGEN HIGHTECH Programes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licensees_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectmultiple myelomaes_ES
dc.subjectliquid biopsyes_ES
dc.subjectextracellular vesicleses_ES
dc.subjectmiRNAses_ES
dc.subjectisomiR modellinges_ES
dc.subjectresponse predictiones_ES
dc.subjectpersonalized therapyes_ES
dc.titleCirculating extracellular vesicle isomiR signatures predict therapy response in patients with multiple myelomaes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.xcrm.2025.102358
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License