Afficher la notice abrégée

dc.contributor.authorMoreno Frías, María Ángeles
dc.contributor.authorRosales González, José Carlos 
dc.date.accessioned2026-01-26T09:11:41Z
dc.date.available2026-01-26T09:11:41Z
dc.date.issued2026-01-02
dc.identifier.citationMoreno-Frías, M. Á., & Rosales, J. C. (2026). Radical Numerical Semigroups. Axioms, 15(1), 36. https://doi.org/10.3390/axioms15010036es_ES
dc.identifier.urihttps://hdl.handle.net/10481/110237
dc.description.abstractThis work contributes to the study of radical numerical semigroups. If 𝑛� ∈ℤ where 𝑛� ≥2, then the product of all its prime positive divisors is called the radical of n. It is denoted by r⁡(𝑛�). A radical numerical semigroup is a numerical semigroup S such that 𝑠� +r⁡(𝑠�) ∈𝑆� for every 𝑠� ∈𝑆�\{0}. We present three algorithms that will help us understand the structure of radical semigroups. These algorithms allow us to calculate all radical numerical semigroups with a fixed genus, with a fixed Frobenius number, as well as with a fixed multiplicity. Furthermore, given X, a set of positive integers such that gcd⁡(𝑋�) =1, we will prove the existence of the smallest radical semigroup containing X. We will also present an algorithm to obtain it.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectRadical numerical semigroupes_ES
dc.subjectFrobenius varietyes_ES
dc.subjectFrobenius pseudo-varietyes_ES
dc.titleRadical Numerical Semigroupses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/axioms15010036
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional