Afficher la notice abrégée

dc.contributor.authorGaitán-Guerrero, Juan F.
dc.contributor.authorMartínez Cruz, Carmen
dc.contributor.authorEspinilla, Macarena
dc.contributor.authorDíaz-Jiménez, David
dc.contributor.authorLópez, Jose L.
dc.date.accessioned2026-01-21T11:05:22Z
dc.date.available2026-01-21T11:05:22Z
dc.date.issued2025
dc.identifier.citationGaitán-Guerrero JF, Martínez-Cruz C, Espinilla M, Díaz-Jiménez D, López JL. A novel fine-tuning and evaluation methodology for large language models on IoT raw data summaries (LLM-RawDMeth): A joint perspective in diabetes care. Comput Methods Programs Biomed. 2025 Sep;269:108878. doi: 10.1016/j.cmpb.2025.108878es_ES
dc.identifier.issn0169-2607
dc.identifier.urihttps://hdl.handle.net/10481/110032
dc.descriptionThis result has been partially supported by grant PID2021-127275OB-I00 and grant PID2021-126363NB-I00 funded by MICIU/AEI/10.13039/501100011033, Spain and by ‘‘ERDF A way of making Europe’’, and by grant PDC2023-145863-I00 funded by MICIU/AEI/ 10.13039/501100011033, Spain and by the ‘‘European Union NextGenerationEU/PRTR’’. Funding for open access charge: Universidad de Jaén/ CBUAes_ES
dc.description.abstractThis study addresses the challenge of interpreting complex continuous glucose monitoring data in diabetes management by proposing a domain-guided fine-tuning methodology for Large Language Models. Using expert-modeled fuzzy logic datasets and task-aware prompt engineering, the approach enables LLMs to generate accurate, concise, and clinically meaningful summaries from raw glucose data. Experimental results show that fine-tuned GPT-4o achieves superior performance, demonstrating the potential of expert-aligned language models to support medical decision-making and reduce the burden on healthcare systems.es_ES
dc.description.sponsorshipMICIU/AEI/10.13039/501100011033, TPID2021-127275OB-I00, PID2021-126363NB-I00 and PDC2023-145863-I00es_ES
dc.description.sponsorshipEuropean Union NextGenerationEU/PRTRes_ES
dc.description.sponsorshipUniversidad de Jaén/ CBUAes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDiabetes managementes_ES
dc.subjectPrompt engineeringes_ES
dc.subjectContinuous glucose monitoringes_ES
dc.titleA novel fine-tuning and evaluation methodology for large language models on IoT raw data summaries (LLM-RawDMeth): A joint perspective in diabetes carees_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.cmpb.2025.108878
dc.type.hasVersionAMes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional