| dc.contributor.author | Gaitán-Guerrero, Juan F. | |
| dc.contributor.author | Martínez Cruz, Carmen | |
| dc.contributor.author | Espinilla, Macarena | |
| dc.contributor.author | Díaz-Jiménez, David | |
| dc.contributor.author | López, Jose L. | |
| dc.date.accessioned | 2026-01-21T11:05:22Z | |
| dc.date.available | 2026-01-21T11:05:22Z | |
| dc.date.issued | 2025 | |
| dc.identifier.citation | Gaitán-Guerrero JF, Martínez-Cruz C, Espinilla M, Díaz-Jiménez D, López JL. A novel fine-tuning and evaluation methodology for large language models on IoT raw data summaries (LLM-RawDMeth): A joint perspective in diabetes care. Comput Methods Programs Biomed. 2025 Sep;269:108878. doi: 10.1016/j.cmpb.2025.108878 | es_ES |
| dc.identifier.issn | 0169-2607 | |
| dc.identifier.uri | https://hdl.handle.net/10481/110032 | |
| dc.description | This result has been partially supported by grant PID2021-127275OB-I00 and grant PID2021-126363NB-I00 funded by MICIU/AEI/10.13039/501100011033, Spain and by ‘‘ERDF A way of making Europe’’, and by grant PDC2023-145863-I00 funded by MICIU/AEI/ 10.13039/501100011033, Spain and by the ‘‘European Union NextGenerationEU/PRTR’’. Funding for open access charge: Universidad de Jaén/ CBUA | es_ES |
| dc.description.abstract | This study addresses the challenge of interpreting complex continuous glucose monitoring data in diabetes management by proposing a domain-guided fine-tuning methodology for Large Language Models. Using expert-modeled fuzzy logic datasets and task-aware prompt engineering, the approach enables LLMs to generate accurate, concise, and clinically meaningful summaries from raw glucose data. Experimental results show that fine-tuned GPT-4o achieves superior performance, demonstrating the potential of expert-aligned language models to support medical decision-making and reduce the burden on healthcare systems. | es_ES |
| dc.description.sponsorship | MICIU/AEI/10.13039/501100011033, TPID2021-127275OB-I00, PID2021-126363NB-I00 and PDC2023-145863-I00 | es_ES |
| dc.description.sponsorship | European Union NextGenerationEU/PRTR | es_ES |
| dc.description.sponsorship | Universidad de Jaén/ CBUA | es_ES |
| dc.language.iso | eng | es_ES |
| dc.publisher | Elsevier | es_ES |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
| dc.subject | Diabetes management | es_ES |
| dc.subject | Prompt engineering | es_ES |
| dc.subject | Continuous glucose monitoring | es_ES |
| dc.title | A novel fine-tuning and evaluation methodology for large language models on IoT raw data summaries (LLM-RawDMeth): A joint perspective in diabetes care | es_ES |
| dc.type | journal article | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.identifier.doi | 10.1016/j.cmpb.2025.108878 | |
| dc.type.hasVersion | AM | es_ES |