Learning sets of bayesian networks
Metadatos
Mostrar el registro completo del ítemEditorial
Springer Nature
Fecha
2020Referencia bibliográfica
Cano, A., Gómez-Olmedo, M., Moral, S. (2020). Learning Sets of Bayesian Networks. In: Lesot, MJ., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2020. Communications in Computer and Information Science, vol 1238. Springer, Cham.
Patrocinador
This research was supported by the Spanish Ministry of Education and Science under project TIN2016-77902-C3-2-P, and the European Regional Development Fund (FEDER).Resumen
Este trabajo analiza el problema del aprendizaje de una red credal generalizada (un conjunto de redes bayesianas) a partir de un conjunto de datos. Se basa en el uso de la puntuación BDEu y calcula todas las redes con una puntuación superior a un factor predeterminado del óptimo. Para evitar el problema de determinar el tamaño muestral equivalente (ESS), el enfoque también considera la posibilidad de un ESS indeterminado. Aunque el resultado final es un conjunto de redes bayesianas, el trabajo también estudia el problema de seleccionar una única red con algunos procedimientos alternativos. Por último, se llevan a cabo algunos experimentos preliminares con tres redes pequeñas.
This paper considers the problem of learning a generalized credal network (a set of Bayesian networks) from a dataset. It is based on using the BDEu score and computes all the networks with score above a predetermined factor of the optimal one. To avoid the problem of deter- mining the equivalent sample size (ESS), the approach also considers the possibility of an undetermined ESS. Even if the final result is a set of Bayesian networks, the paper also studies the problem of selecting a sin- gle network with some alternative procedures. Finally, some preliminary experiments are carried out with three small networks.





