Show simple item record

dc.contributor.authorOrtiz-Ramos, Uziel
dc.contributor.authorBailón García, Esther 
dc.contributor.authorPérez Cadenas, Agustín Francisco 
dc.contributor.authorLeyva-Ramos, Roberto
dc.contributor.authorCarrasco Marín, Francisco 
dc.date.accessioned2026-01-19T11:12:37Z
dc.date.available2026-01-19T11:12:37Z
dc.date.issued2026-02-01
dc.identifier.citationOrtiz-Ramos, U., Bailón-García, E., Pérez-Cadenas, A. F., Leyva-Ramos, R., & Carrasco-Marín, F. (2026). Tailored hierarchically textured 3D-printed carbon monoliths for enhanced liquid-phase adsorption under flow conditions. Chemical Engineering Journal (Lausanne, Switzerland: 1996), 172836, 172836. https://doi.org/10.1016/j.cej.2026.172836es_ES
dc.identifier.urihttps://hdl.handle.net/10481/109878
dc.description.abstractThis work introduces a design strategy for adsorption monoliths, in which porous texture and flow architecture are independently tuned to enhance liquid-phase adsorption performance under flow conditions. Hierarchically textured 3D-printed carbon monoliths with engineered, interconnected channel architectures are developed for the adsorption of emerging contaminants, using sulfamethoxazole (SMX) as a model pharmaceutical pollutant. These materials are fabricated through a hybrid approach that integrates sol-gel polymerization of resorcinol (R), formaldehyde (F), and Cs2CO3 (Cs) with 3D printing. Adjusting the R/Cs ratio within the range of 100 to 2000 enables precise control over the macroporous texture, resulting in mean pore diameters between 95.1 and 157.1 nm while preserving the printed channel geometry and structural integrity. Among the resulting monoliths, Monolith-100 exhibits the highest adsorption capacity (61.4 mg g−1), attributed to π-π stacking and electrostatic interactions. In batch adsorption mode, the adsorption capacity decreases in the order Monolith-100 > Monolith-500 > Monolith-1000 > Monolith-2000, with increasing R/Cs ratio. In continuous flow tests, Monolith-1000 demonstrates superior adsorption performance, resulting in extended breakthrough times and reduced mass transfer zone height (HMTZ). The interconnected, 3D-printed geometry promotes enhanced SMX-adsorbent interaction via flow redistribution and mixing, achieving breakthrough times of up to 200 min with a reduced HMTZ, markedly longer than those of monoliths with conventional straight channels, which exhibit rapid breakthrough times (5 min). These findings demonstrate the potential of independent control over porous texture and structural design to optimize next-generation flow-through adsorption systems.es_ES
dc.description.sponsorshipMICIU/AEI/doi:10.13039/501100011033 and by “ERDF A way of making Europe” - (PID2021-127803OB-I00)es_ES
dc.description.sponsorshipEuropean Union NextGenerationEU/PRTR - (CNS2023-144680)es_ES
dc.description.sponsorshipAndalusia 2021-2027 FEDER Operational Programme - (DGF_PLSQ_2023_00183)es_ES
dc.description.sponsorshipCONAHCyT - (Grant No. 780307)es_ES
dc.description.sponsorshipAsociación Universitaria Iberoamericana de Postgrado (AUIP) - (PMA2-2022-123-14)es_ES
dc.description.sponsorshipMCIN/AEI/doi:10.13039/501100011033 and, by “ESF Investing in your future” - (RYC2020-029301-I)es_ES
dc.description.sponsorshipUniversidad de Granada / CBUA - Funding for open access chargees_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subject3D-printinges_ES
dc.subjectSol-gel polymerizationes_ES
dc.subjectCarbon monolithses_ES
dc.titleTailored hierarchically textured 3D-printed carbon monoliths for enhanced liquid-phase adsorption under flow conditionses_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EU/PRTR/CNS2023-144680es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.cej.2026.172836
dc.type.hasVersionVoRes_ES


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución-NoComercial 4.0 Internacional