Afficher la notice abrégée

dc.contributor.authorNúñez Molina, Carlos
dc.contributor.authorMesejo Santiago, Pablo 
dc.contributor.authorFernández Olivares, Juan 
dc.date.accessioned2026-01-19T10:25:20Z
dc.date.available2026-01-19T10:25:20Z
dc.date.issued2026-03
dc.identifier.citationNúñez-Molina, C., Mesejo, P., & Fernández-Olivares, J. (2026). Automated planning instance generation with neuro-symbolic AI. Artificial Intelligence, 352(104471), 104471. https://doi.org/10.1016/j.artint.2025.104471es_ES
dc.identifier.urihttps://hdl.handle.net/10481/109868
dc.description.abstractIn the field of Automated Planning there is often the need for a set of planning problems from a particular domain, e.g., to be used as training data for Machine Learning methods or as benchmarks in planning competitions. In most cases, these problems are created either by hand or by a domain-specific generator, putting a burden on the human designers. In this paper, we propose NeSIG (Neuro-Symbolic Instance Generator), to the best of our knowledge the first domain-independent method for automatically generating typed-STRIPS planning problems that are valid, diverse and difficult to solve. We formulate problem generation as a Markov Decision Process and train two generative policies with Deep Reinforcement Learning to generate problems with the desired properties. We conduct experiments on five classical domains, comparing our approach against handcrafted, domain-specific instance generators and various ablations. Results show NeSIG is able to automatically generate valid and diverse problems of much greater difficulty (6.8 times more on geometric average) than domain-specific generators, while simultaneously reducing human effort when compared to them. Additionally, it can generalize to problems more than twice the size of those seen during training.es_ES
dc.description.sponsorshipMICIU/AEI/ 10.13039/501100011033 and “ERDF/EU” - (PID2022-142976OB-I00)es_ES
dc.description.sponsorship“ERDF/EU” - Andalusian Regional predoctoral grant (no. 21-111- PREDOC-0039)es_ES
dc.description.sponsorshipFederal Ministry for Education and Research, by the European Research Council (ERC) - (No. 885107)es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAutomated Planninges_ES
dc.subjectReinforcement learninges_ES
dc.subjectNeuro-symbolic AIes_ES
dc.titleAutomated planning instance generation with neuro-symbolic AIes_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/ERC/H2020/885107es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.artint.2025.104471
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional