Afficher la notice abrégée

dc.contributor.authorCastillo López, Ana 
dc.contributor.authorRescalvo Martín, Silvia Elisa 
dc.contributor.authorKaratepe, Osman M.
dc.date.accessioned2026-01-15T07:46:48Z
dc.date.available2026-01-15T07:46:48Z
dc.date.issued2025-11-11
dc.identifier.citationPublished version: Castillo A, Rescalvo-Martin E, Karatepe OM (2025), "How is common method bias addressed using partial least squares structural equation modeling in hospitality and tourism research?". Tourism Review, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/TR-07-2025-0762es_ES
dc.identifier.urihttps://hdl.handle.net/10481/109711
dc.description.abstractPurpose – The purpose of this study is to investigate how common method bias (CMB) is addressed using partial least squares structural equation modeling (PLS-SEM) in hospitality and tourism research. Design/methodology/approach – A systematic literature review was conducted on empirical studies published in 2023 and 2024 across 11 high-ranking hospitality and tourism journals. After applying exclusion criteria, 227 articles using PLS-SEM and addressing CMB were somehow analyzed, focusing on the extent and quality of reported CMB controls. The review included both procedural and statistical techniques. Findings – While awareness of CMB has increased, many studies either fail to address it or apply methods incorrectly, especially the full collinearity test. Most rely on basic procedures or Harman’s single-factor test, with limited use of more advanced techniques. A practical demonstration of the random dependent variable (RDV) technique is provided to guide proper implementation. Originality/value – Given the field’s reliance on self-reported data, the potential for CMB is high, yet methodological rigor in its detection and control remains underexplored. This paper’s main contribution highlights the RDV technique as a critical field-appropriate tool to address CMB within PLS-SEM applications.es_ES
dc.language.isoenges_ES
dc.publisherEmeraldes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCommon method biases_ES
dc.subjectCMBes_ES
dc.subjectHospitalityes_ES
dc.subjectPartial least squareses_ES
dc.subjectPLSes_ES
dc.subjectStructural equation modelinges_ES
dc.subjectSEMes_ES
dc.subjectTourismes_ES
dc.titleHow is common method bias addressed using partial least squares structural equation modeling in hospitality and tourism research?es_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1108/TR-07-2025-0762
dc.type.hasVersionAMes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional