Mostrar el registro sencillo del ítem

dc.contributor.authorLam Le, Hoang
dc.contributor.authorLanda-Silva, Dario
dc.contributor.authorGalar, Mikel
dc.contributor.authorGarcía López, Salvador 
dc.contributor.authorTriguero, Isaac
dc.date.accessioned2026-01-13T08:51:38Z
dc.date.available2026-01-13T08:51:38Z
dc.date.issued2021-03
dc.identifier.urihttps://hdl.handle.net/10481/109592
dc.description.abstractearning from imbalanced datasets is highly demanded in real-world applications and a challenge for standard classifiers that tend to be biased towards the classes with the majority of the examples. Undersampling approaches reduce the size of the majority class to balance the class distributions. Evolutionary-based approaches are prominent, treating undersampling as a binary optimisation problem that determines which examples are removed. However, their utilisation is limited to small datasets due to fitness evaluation costs. This work proposes a two-stage clustering-based surrogate model that enables evolutionary undersampling to compute fitness values faster. The main novelty lies in the development of a surrogate model for binary optimisation which is based on the meaning (phenotype) rather than their binary representation (genotype). We conduct an evaluation on 44 imbalanced datasets, showing that in comparison with the original evolutionary undersampling, we can save up to 83% of the runtime without significantly deteriorating the classification performance.es_ES
dc.language.isoenges_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 License
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectData preprocessinges_ES
dc.subjectEvolutionary undersamplinges_ES
dc.subjectSurrogate modelses_ES
dc.subjectImbalanced classificationes_ES
dc.subjectFitness approximationes_ES
dc.titleEUSC: A clustering-based surrogate model to accelerate evolutionary undersampling in imbalanced classificationes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.asoc.2020.107033
dc.type.hasVersionAMes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License