Afficher la notice abrégée

dc.contributor.authorJiménez, Manuel
dc.contributor.authorTriguero, Isaac
dc.contributor.authorJohn, Robert
dc.date.accessioned2026-01-13T07:41:12Z
dc.date.available2026-01-13T07:41:12Z
dc.date.issued2019-04
dc.identifier.citationPublished version: Jiménez, Manuel et al. Handling uncertainty in citizen science data: Towards an improved amateur-based large-scale classification. Information Sciences Volume 479, April 2019, Pages 301-320. https://doi.org/10.1016/j.ins.2018.12.011es_ES
dc.identifier.urihttps://hdl.handle.net/10481/109576
dc.descriptionThe work of M. Jiménez was funded by a Ph.D. scholarship from the School of Computer Science of the University of Nottingham.es_ES
dc.description.abstractCitizen Science, traditionally known as the engagement of amateur participants in research, is showing great potential for large-scale processing of data. In areas such as astronomy, biology, or geo-sciences, where emerging technologies generate huge volumes of data, Citizen Science projects enable image classification at a rate not possible to accomplish by experts alone. However, this approach entails the spread of biases and uncertainty in the results, since participants involved are typically non-experts in the problem and hold variable skills. Consequently, the research community tends not to trust Citizen Science outcomes, claiming a generalised lack of accuracy and validation. We introduce a novel multi-stage approach to handle uncertainty within data labelled by amateurs in Citizen Science projects. Firstly, our method proposes a set of transformations that leverage the uncertainty in amateur classifications. Then, a hybridisation strategy provides the best aggregation of the transformed data for improving the quality and confidence in the results. As a case study, we consider the Galaxy Zoo, a project pursuing the labelling of galaxy images. A limited set of expert classifications allow us to validate the experiments, confirming that our approach is able to greatly boost accuracy and classify more images with respect to the state-of-art.es_ES
dc.description.sponsorshipUniversity of Nottinghames_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 License
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectCitizen sciencees_ES
dc.subjectClassificationes_ES
dc.subjectAstroinformaticses_ES
dc.subjectGalaxy morphologieses_ES
dc.subjectUncertainty es_ES
dc.subjectData analysises_ES
dc.titleHandling uncertainty in citizen science data: Towards an improved amateur-based large-scale classificationes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.ins.2018.12.011
dc.type.hasVersionAMes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License