A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation
Metadatos
Mostrar el registro completo del ítemEditorial
American Institute of Mathematical Sciences (AIMS)
Fecha
2020-11-12Referencia bibliográfica
Discrete and Continuous Dynamical Systems - Ser. A 41(6) (2021), pp. 2601-2617
Patrocinador
MINECO-Feder (Spain) research grant number RTI2018-098850-B-I00; Junta de Andalucía (Spain) Project PY18-RT-2422 & A-FQM-311-UGR18Resumen
The parabolic-parabolic Keller-Segel model of chemotaxis is shown to come up as the hydrodynamic system describing the evolution of the modulus square n(t,x) and the argument S(t,x) of a wavefunction ψ = √n exp(iS) that solves a cubic Schrödinger equation with focusing interaction, frictional Kostin nonlinearity and Doebner-Goldin dissipation mechanism. This connection is then exploited to construct a family of quasi-stationary solutions to the Keller-Segel system under the influence of no-flux and anti-Fick laws





