Mostrar el registro sencillo del ítem

dc.contributor.authorLi, Yangxue
dc.contributor.authorMorente Molinera, Juan Antonio 
dc.contributor.authorHerrera Viedma, Enrique 
dc.contributor.authorTrillo Vílchez, José Ramón 
dc.date.accessioned2026-01-09T08:09:34Z
dc.date.available2026-01-09T08:09:34Z
dc.date.issued2025-05-25
dc.identifier.citationY. Li, J. Antonio Morente-Molinera, J. Ramón Trillo and E. Herrera-Viedma, "Z-Number Generation Model and Its Application in a Rule-Based Classification System," in IEEE Transactions on Cybernetics, vol. 55, no. 5, pp. 2010-2023, May 2025, doi: 10.1109/TCYB.2025.3545195.es_ES
dc.identifier.urihttps://hdl.handle.net/10481/109348
dc.description.abstractDue to their unique structure and powerful capability to handle uncertainty and partial reliability of information, Z-numbers have achieved significant success in various fields. Zadeh previously asserted that a Z-number can be regarded as a summary of probability distributions. Researchers have proposed various methods for determining the underlying probability distributions from a given Z-number. Conversely, can a Z-number be used to summarize a set of probability distributions? This problem remains unexplored. In this article, we propose a nonlinear model, termed Maximum Expected Minimum Entropy (MEME), for generating a Z-number from a set of probability distributions. Through this model, Z-numbers can be generated directly from data without requiring expert knowledge. Additionally, we applied the MEME model to classification problems, introducing a novel if-then rule form, termed Z-valuation if-then rules. These rules replace the deterministic consequent part of a fuzzy rule with an uncertain Z-valuation, thereby further summarizing the uncertain information in the rule’s consequent. Based on the Z-valuation rules, we propose a Z-valuation rule-based (ZVRB) classification system, which aims to enhance decision-making processes in scenarios where uncertainty plays a key role. To validate the effectiveness of the ZVRB classification system, we conducted two experiments comparing it with both classic and advanced nonfuzzy classifiers as well as fuzzy classification systems. The results show that the ZVRB model is superior to the other comparative classifiers in terms of classification performance.es_ES
dc.language.isoenges_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es_ES
dc.subjectProbability distributiones_ES
dc.subjectUncertaintyes_ES
dc.subjectReliabilityes_ES
dc.subjectFuzzy sets es_ES
dc.subjectEntropy es_ES
dc.subjectDecision makinges_ES
dc.subjectEngines es_ES
dc.subjectData modelses_ES
dc.subjectAccuracyes_ES
dc.subjectRisk management es_ES
dc.subjectFuzzy rule-based systemes_ES
dc.subjectoptimizationes_ES
dc.subjectpattern classificationes_ES
dc.subjectZ-numberes_ES
dc.titleZ-Number Generation Model and Its Application in a Rule-Based Classification Systemes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/TCYB.2025.3545195
dc.type.hasVersionAMes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License