Afficher la notice abrégée

dc.contributor.authorJin, Keyan
dc.contributor.authorBlanco Encomienda, Francisco Javier 
dc.date.accessioned2026-01-08T11:46:06Z
dc.date.available2026-01-08T11:46:06Z
dc.date.issued2026-04-05
dc.identifier.citationJin, K., & Blanco-Encomienda, F. J. (2026). HiCORE: Enhancing consumer intent prediction via hybrid attention and contrastive learning in sequential recommendation. Expert Systems With Applications, 305(130860), 130860. https://doi.org/10.1016/j.eswa.2025.130860es_ES
dc.identifier.urihttps://hdl.handle.net/10481/109323
dc.description.abstractAccurately predicting consumer intent from sequential interactions is essential for enhancing recommendation accuracy and driving effective marketing strategies. In this paper, we introduce HiCORE, a Transformer-based sequential recommendation model integrating Layer-wise Hybrideak Attention, Rotary Positional Embeddings (RoPE), and a Contrastive Self-Supervised Learning (SSL) objective. HiCORE effectively captures both global consumer preferences and local contextual interests, explicitly encodes relative positional information, and ensures robust sequence-level representations, addressing common limitations such as data sparsity and noise. Extensive experiments on three real-world datasets demonstrate that HiCORE significantly outperforms state-of-the-art methods in recommendation accuracy metrics. Moreover, HiCORE’s enhanced capability in consumer intent prediction provides valuable insights for consumer segmentation and targeted marketing, bridging advanced computational methods and practical business applications.es_ES
dc.description.sponsorshipUniversity of Granada/CBUA - (Open Access charge)es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectSequential recommendationes_ES
dc.subjectConsumer intent predictiones_ES
dc.subjectContrastive learninges_ES
dc.titleHiCORE: Enhancing consumer intent prediction via hybrid attention and contrastive learning in sequential recommendationes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.eswa.2025.130860
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional