Afficher la notice abrégée

dc.contributor.authorTirado Pérez, María Paulina
dc.contributor.authorMartínez Ortigosa, Eva 
dc.contributor.authorRos Vidal, Eduardo 
dc.contributor.authorGarrido Alcázar, Jesús Alberto 
dc.date.accessioned2025-12-12T11:30:49Z
dc.date.available2025-12-12T11:30:49Z
dc.date.issued2025-11-25
dc.identifier.citationTirado, M.P., Ortigosa, E.M., Ros, E. et al. A computational model of the cerebellar granular layer calibrated to experimental data for studying inhibition and sensory encoding. Sci Rep 15, 41788 (2025). https://doi.org/10.1038/s41598-025-25727-5es_ES
dc.identifier.urihttps://hdl.handle.net/10481/108760
dc.description.abstractThe cerebellar granular layer plays a central role in sensory processing and pattern separation through its distinctive feedforward architecture. Here, we present a biologically realistic computational model of the granular layer designed to explore the functional impact of synaptic inhibition mediated by Golgi cells. The model integrates anatomical and physiological constraints to simulate realistic mossy fiber activity patterns, including spatial correlations and varying activation levels. We validate the model by replicating key findings from recent in vivo experiments, such as the role of inhibition in shaping granule cell responsiveness and the emergence of nonlinear suppression during multisensory integration. Beyond validation, the model provides a robust computational tool for studying how inhibition contributes to energy-efficient and noise-resilient sensory encoding. Mechanistic analyses revealed that moderate inhibition levels optimize pattern separation performance, with feedforward and feedback inhibitory circuits exerting distinct effects on coding expansion and decorrelation. All model code and simulation scripts are openly available, offering a framework for generating testable hypotheses and further investigating cerebellar computation and learning mechanisms in divergent feedforward networks.es_ES
dc.description.sponsorshipMICIU/AEI/10.13039/501100011033 - (PID2022-140095NB-I00) (PID2020-113422GA-I00)es_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleA computational model of the cerebellar granular layer calibrated to experimental data for studying inhibition and sensory encodinges_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1038/s41598-025-25727-5
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional