Mostrar el registro sencillo del ítem

dc.contributor.authorBello, Marilyn
dc.contributor.authorAmador, Rosalís
dc.contributor.authorGarcía, María-Matilde
dc.contributor.authorBello, Rafael
dc.contributor.authorCordón García, Óscar 
dc.contributor.authorHerrera, Francisco
dc.date.accessioned2025-12-11T11:34:55Z
dc.date.available2025-12-11T11:34:55Z
dc.date.issued2025-11-26
dc.identifier.citationBello, Marilyn, Amador, Rosalís, García, María-Matilde, Bello, Rafael, Cordón, Óscar, Herrera, Francisco, Meta-Explainers: A Unified Ensemble Approach for Multifaceted XAI, International Journal of Intelligent Systems, 2025, 4841666, 17 pages, 2025. https://doi.org/10.1155/int/4841666es_ES
dc.identifier.urihttps://hdl.handle.net/10481/108726
dc.description.abstractArtifcial intelligence (AI) systems are increasingly adopted in high-stakes domains such as healthcare and fnance, so the demand for transparency and interpretability has grown substantially. EXplainable AI (XAI) methods have emerged to address this challenge, but individual techniques often ofer limited, fragmented insights. Tis paper introduces Meta-explainers, a novel ensemble-based XAI framework that integrates multiple explanation types—specifcally relevance-based and counterfactual methods—into unifed, multifaceted and complementary meta-explanations. Inspired by meta-classifcation principles, our approach structures the explanation process into fve stages: generation, grouping, evaluation, aggregation, and visualization. Each stage is designed to preserve the unique strengths of individual XAI techniques while enhancing their interpretability and coherence when combined. Experimental results on both image (MNIST) and tabular (Breast Cancer) datasets show that Metaexplainers consistently outperform individual and state-of-the-art ensemble explanation methods in terms of explanation quality, as measured by established metrics. Tis work paves the way toward more holistic and user-centered AI explainability with a fexible methodology that can be extended to incorporate additional explanation paradigms.es_ES
dc.description.sponsorshipProgramas ENIA (TSI-100927-2023-1 “IAFER")es_ES
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (PID2023-150070NB-I00; PID2024-156434NB-I00)es_ES
dc.description.sponsorshipUniversidad de Granada / CBUA (Open access funding)es_ES
dc.language.isoenges_ES
dc.publisherJohn Wiley & Sons, Ltd.es_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectComplementary meta-explanationses_ES
dc.subjectExplainable artifcial intelligencees_ES
dc.subjectMeta-explainerses_ES
dc.titleMeta-Explainers: A Unified Ensemble Approach for Multifaceted XAIes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1155/int/4841666
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional