Mostrar el registro sencillo del ítem

dc.contributor.authorLobillo Borrero, Francisco Javier 
dc.contributor.authorSantonastaso, Paolo
dc.contributor.authorSheekey, John
dc.date.accessioned2025-12-05T11:48:22Z
dc.date.available2025-12-05T11:48:22Z
dc.date.issued2025-12-04
dc.identifier.citationF.J. Lobillo et al; Quotients of skew polynomial rings: new constructions of division algebras and MRD codes, J. Algebra (2025), doi: https://doi.org/10.1016/j.jalgebra.2025.11.024es_ES
dc.identifier.urihttps://hdl.handle.net/10481/108623
dc.description.abstractWe achieve new results on skew polynomial rings and their quotients, including the first explicit example of a skew polynomial ring where the ratio of the degree of a skew polynomial to the degree of its bound is not extremal. These methods lead to the construction of new (not necessarily associative) division algebras and maximum rank distance (MRD) codes over both finite and infinite division rings. In particular, we construct new non-associative division algebras whose right nucleus is a central simple algebra having degree greater than 1. Over finite fields, we obtain new semifields and MRD codes for infinitely many choices of parameters. These families extend and contain many of the best previously known constructions.es_ES
dc.description.sponsorship(GNSAGA - INdAM) - (E53C23001670001)es_ES
dc.description.sponsorshipBando Galileo 2024 - (G24-216)es_ES
dc.description.sponsorshipMICIU/AEI/ 10.13039/501100011033 and FEDER - (PID2023-149565NB-I00)es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectSkew polynomial ringses_ES
dc.subjectDivision algebraes_ES
dc.subjectSemifieldes_ES
dc.titleQuotients of skew polynomial rings: new constructions of division algebras and MRD codeses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.jalgebra.2025.11.024
dc.type.hasVersionAMes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional