Mostrar el registro sencillo del ítem

dc.contributor.authorGorriz Sáez, Juan Manuel 
dc.contributor.authorRamírez, J.
dc.contributor.authorSegovia Román, Fermín 
dc.contributor.authorJiménez Mesa, Carmen 
dc.contributor.authorMartínez Murcia, Francisco Jesús 
dc.contributor.authorSuckling, John
dc.date.accessioned2025-12-03T12:13:44Z
dc.date.available2025-12-03T12:13:44Z
dc.date.issued2024
dc.identifier.citationGórriz, J.M., Ramírez, J., Segovia, F., Martínez-Murcia, F.J., Jim'enez-Mesa, C., & Suckling, J. (2024). Statistical Agnostic Regression: a machine learning method to validate regression models. Journal of advanced research. https://doi.org/10.1016/j.jare.2025.04.026es_ES
dc.identifier.issn2090-1232
dc.identifier.issn2090-1224
dc.identifier.urihttps://hdl.handle.net/10481/108560
dc.descriptionGrant PID2022-137451OB-I00 funded by MICIU/AEI/10.13039/501100011033 and by ERDF, EU. This research is part of the PID2022-137451OB-I00 and PID2022-137629OA-I00 projects, funded by the CIN/AEI/10.13039/501100011033 and by FSE+. This work was (partially) supported by Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED) (through Red [225RT0169]).es_ES
dc.description.abstractIntroduction: Regression analysis is a central topic in statistical modeling, aimed at estimating the relationships between a dependent variable, commonly referred to as the response variable, and one or more independent variables, i.e., explanatory variables. Linear regression is by far the most popular method for performing this task in various fields of research, such as data integration and predictive modeling when combining information from multiple sources. Objectives: Classical methods for solving linear regression problems, such as Ordinary Least Squares (OLS), Ridge, or Lasso regressions, often form the foundation for more advanced machine learning (ML) techniques, which have been successfully applied, though without a formal definition of statistical significance. At most, permutation or analyses based on empirical measures (e.g., residuals or accuracy) have been conducted, leveraging the greater sensitivity of ML estimations for detection. Methods: In this paper, we introduce Statistical Agnostic Regression (SAR) for evaluating the statistical significance of ML-based linear regression models. This is achieved by analyzing concentration inequalities of the actual risk (expected loss) and considering the worst-case scenario. To this end, we define a threshold that ensures there is sufficient evidence, with a probability of at least 1 g, to conclude the existence of a linear relationship in the population between the explanatory (feature) and the response (label) variables. Conclusions: Simulations demonstrate that the proposed agnostic (non-parametric) test can perform an analysis of variance comparable to the classical multivariate F-test for the slope parameter, without relying on the underlying assumptions of classical methods. A power analysis on a putative regression task revealed an overinflated false positive rate in standard ML methods, whereas the SAR test exhibited excellent control. Moreover, the residuals computed using this method represent a trade-off between those obtained from ML approaches and classical OLS.es_ES
dc.description.sponsorshipMICIU/AEI/10.13039/501100011033, PID2022-137451OB-I00es_ES
dc.description.sponsorshipCIN/AEI/10.13039/501100011033 FSE+, PID2022-137451OB-I00 and PID2022-137629OA-I00es_ES
dc.description.sponsorshipPrograma Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED), 225RT0169es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectOrdinary least squareses_ES
dc.subjectK-fold cross-validationes_ES
dc.subjectLinear support vector machineses_ES
dc.titleStatistical agnostic regression: A machine learning method to validate regression modelses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.jare.2025.04.026
dc.type.hasVersionAMes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional