Afficher la notice abrégée

dc.contributor.authorValenzuela Gutiérrez, Antonio 
dc.date.accessioned2025-12-03T09:46:00Z
dc.date.available2025-12-03T09:46:00Z
dc.date.issued2025-11
dc.identifier.citationValenzuela, A., Sánchez Jiménez, G., Titos, G., Lin, W., Rejano, F., Alados Arboledas, L., & Al-Abadleh, H. A. (2025). Real-time evolution of optical and morphological properties in levitated aqueous microdroplets via iron-catalyzed catechol reactions. Journal of Aerosol Science, 190(106659), 106659. https://doi.org/10.1016/j.jaerosci.2025.106659es_ES
dc.identifier.urihttps://hdl.handle.net/10481/108546
dc.description.abstractThe direct radiative impact of atmospheric aerosols remains more uncertain than that of greenhouse gases, largely due to the complex transformations’ aerosols undergo during atmospheric aging. Sulfate aerosols have been the subject of considerable research, with a robust body of literature characterising their cooling effect. In contrast, the light-absorbing properties and warming potential of black carbon and related products remain less well understood, with limited research available to date. The present study examines the iron-catalyzed reaction of catechol in levitated microdroplets, tracked in situ using elastic light scattering spectroscopy. The reaction forms water-insoluble polycatechol aggregates, which drive a transition from homogeneous spheres to heterogeneous droplets with internal inclusions. To interpret the evolving optical behaviour, the Multiple Sphere T-Matrix (MSTM) model is employed, a method which overcomes the limitations of Mie theory by accounting for internal morphological complexity. The model provides realistic complex refractive indices and fractal parameters, though it should be noted that its solutions are not unique due to sensitivity to input assumptions and droplet variability. This underscores the necessity for supplementary measurements and more comprehensive models incorporating evaporation, chemical dynamics, and phase transitions. These findings emphasise the potential of elastic scattering spectroscopy for real-time monitoring of multiphase chemistry and offer new constraints for improving aerosol aging schemes in climate models, thereby contributing to reduced uncertainties in aerosol radiative forcing.es_ES
dc.description.sponsorshipMCIU/AEI/10.13039/501100011033 (FENIX – PID2023-151668OB-I00; ELPIS – PID2020-120015RB-I00; NUCLEUS – PID2021-128757OB-I00)es_ES
dc.description.sponsorshipUnión Europea – Next Generation EU / PRTRes_ES
dc.description.sponsorshipUnión Europea – Horizon / Research & Innovation Programme (ACTRIS-IMP – Grant Agreement 871115; ATMO-ACCESS – Grant Agreement 101008004)es_ES
dc.description.sponsorshipACTRIS-España (RED2022-134824-E)es_ES
dc.description.sponsorshipUniversidad de Granada / CBUA (Funding for open access charge)es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAtmospheric aerosoles_ES
dc.subjectRadiative forcinges_ES
dc.subjectAerosol aginges_ES
dc.titleReal-time evolution of optical and morphological properties in levitated aqueous microdroplets via iron-catalyzed catechol reactionses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.jaerosci.2025.106659
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional