Mostrar el registro sencillo del ítem

dc.contributor.authorMonasterio Astobiza, Aníbal 
dc.date.accessioned2025-12-03T09:34:23Z
dc.date.available2025-12-03T09:34:23Z
dc.date.issued2025-11-21
dc.identifier.citationAstobiza, A.M. Do AI agents trump human agency?. Discov Artif Intell 5, 348 (2025). https://doi.org/10.1007/s44163-025-00608-yes_ES
dc.identifier.issn2731-0809
dc.identifier.urihttps://hdl.handle.net/10481/108544
dc.descriptionThis publication forms part of grant AutAI PID PID2022-137953OB-I00 funded by MICIU/AEI/https://doi.org/10.13039/501100011033 and by the European Social Fund; and grant PID2024-156166OA-I00, funded by MICIU/AEI/https://doi.org/10.13039/501100011033 and by the European Social Fund Plus (FSE+). This article has also been funded by the Consejería de Universidad, Investigación e Innovación (GrantEMEC_2023_00442)es_ES
dc.description.abstractArtificial agents are examined within simulated environments to elucidate the emergence of collective behaviors and decision-making processes under diverse environmental pressures and population structures. Using an Agent-Based Modeling (ABM) framework, the simulation tracked 157,097 iterations across four agent types: cooperators, defectors, super-reciprocators, and free riders; while analyzing 12 core metrics, including alignment indices, coherence, and environmental stress. The results revealed distinct phase transitions in behavior, with low-density populations (d < 0.4) supporting strong consensus formation and higher densities (d > 0.8) leading to fragmentation and increased competition. Agent alignment consistently ranged between 0.28 and 0.37, reflecting partial but stable consensus across conditions. Cooperative behaviors emerged and persisted only when resource availability exceeded a critical threshold (RG ≥ 6), underscoring the role of resource abundance in sustaining collective intelligence. Through interventions such as network topology changes and cognitive plasticity adjustments, agents demonstrated emergent behavioral patterns that arose from their rule-based interactions. It is important to note that these patterns, while complex, do not constitute “sophisticated decision-making” in the sense of genuine intelligence or understanding. Rather, they represent emergent properties of the system, collective behaviors that cannot be reduced to individual agent rules but emerge from their interactions under specific environmental conditions. This distinction is crucial for avoiding misattribution of intelligence to rule-following systems, even when those systems produce complex outputs. These findings provide insights into the mechanisms driving emergent intelligence in artificial systems and their implications for the governance and ethical design of future AI agents.es_ES
dc.description.sponsorshipMICIU/AEI and European Social Fund, AutAI PID PID2022-137953OB-I00es_ES
dc.description.sponsorshipMICIU/AEI and European Social Fund Plus, PID2024-156166OA-I00es_ES
dc.description.sponsorshipConsejería de Universidad, Investigación e Innovación, GrantEMEC_2023_00442es_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectArtificial intelligence es_ES
dc.subjectCollective behavior es_ES
dc.subjectDecision Making Processeses_ES
dc.titleDo AI agents trump human agency?es_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/s44163-025-00608-y
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional