Afficher la notice abrégée

dc.contributor.authorCantudo, Antonio
dc.contributor.authorVillena, M.A.
dc.contributor.authorJiménez Molinos, Francisco 
dc.contributor.authorRoldán Aranda, Juan Bautista 
dc.date.accessioned2025-11-13T11:36:05Z
dc.date.available2025-11-13T11:36:05Z
dc.date.issued2025-11-12
dc.identifier.citationA. Cantudo et al. Materials Science in Semiconductor Processing 203 (2026) 110253. doi:10.1016/j.mssp.2025.110253es_ES
dc.identifier.urihttps://hdl.handle.net/10481/107966
dc.descriptionResearch supported by the project PID2022-139586NB-C44, funded by MCIN/AEI/10.13039/501100011033 and FEDER, EU; and supported by the Ram´on y Cajal grant (RYC2022-035618-I), funded by MCIU/AEI/10.13039/501100011033, and by the FSE+. F.A.A. is a Research Fellow of the F.R.S.-FNRS. C.K.M. thanks the Deutsche Forschungsgemeinschaft for funding (No. 531524052).es_ES
dc.description.abstractIdentifying new, scalable materials for memristive devices is critical to advance next-generation memory and neuromorphic technologies. In this context, electrodeposited Prussian Blue (PB), a mixed-valence iron hex acyanoferrate compound, is emerging as a highly promising candidate due to its low-cost synthesis, CMOS compatibility, and rich redox chemistry. Here, we report both experimental evidence and theoretical modeling of conductance quantization in memristive devices employing PB as the active dielectric layer. PB thin films were synthesized via electrodeposition and integrated into a conventional metal–insulator–metal (MIM) structure (Ag/ PB/Au), which exhibits robust and reproducible resistive switching behavior. Notably, we observe quantized conductance steps at integer and half-integer multiples of the quantum of conductance (G 0 =2e2/h), indicative of atomic-scale filament formation and ballistic electron transport. To interpret these findings, we use a quantum transport model based on the finite-bias Landauer formalism, incorporating a series resistance and a non-ideality parameter ( α ), which successfully reproduces the experimental I V characteristics. An algorithm is also introduced to extract the model parameters directly from measured data. The emergence of quantized states is attributed to the properties of PB due to its open-framework structure, mixed Fe2/Fe3 valence, and reversible ionic mobility, which allow the formation of atomic conduction channels. These results highlight the potential of PB-based memristors for multilevel memory storage and neuromorphic computing, while offering a scalable, CMOS-compatible, and sustainable materials platform.es_ES
dc.description.sponsorshipMCIN/AEI/10.13039/501100011033 PID2022-139586NB-C44, RYC2022-035618-Ies_ES
dc.description.sponsorshipFEDER, EUes_ES
dc.description.sponsorshipFSE+es_ES
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (No. 531524052)es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMemristorses_ES
dc.subjectPrussian bluees_ES
dc.subjectResistive memoryes_ES
dc.titleConductance quantization in memristive devices with electrodeposited Prussian blue-based dielectricses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.mssp.2025.110253
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional