Mostrar el registro sencillo del ítem

dc.contributor.authorMukherjee, Sudip
dc.contributor.authorNúñez-Martínez, Manuel
dc.contributor.authorIllescas Lopez, Sara
dc.contributor.authorJeyakumar, Archanna
dc.contributor.authorLópez López, Modesto Torcuato 
dc.contributor.authorCuerva Carvajal, Juan Manuel 
dc.contributor.authorBhatia, Vaibhav
dc.contributor.authorGavira Gallardo, José Antonio 
dc.contributor.authorÁlvarez de Cienfuegos, Luis
dc.contributor.authorHaldar, Jayanta
dc.date.accessioned2025-11-05T12:37:37Z
dc.date.available2025-11-05T12:37:37Z
dc.date.issued2025-10-09
dc.identifier.citationMukherjee, S., Núñez-Martínez, M., Illescas-Lopez, S., Jeyakumar, A., Lopez-Lopez, M. T., Cuerva, J. M., Bhatia, V., Gavira, J. A., Álvarez de Cienfuegos, L., & Haldar, J. (2025). Short-peptide based supramolecular nanocomposite hydrogels for the disruption of polymicrobial biofilms and accelerated infected wound healing. Biomaterials Science. https://doi.org/10.1039/d5bm00761ees_ES
dc.identifier.urihttps://hdl.handle.net/10481/107795
dc.description.abstractThe escalating prevalence of drug-resistant microbes coupled with their persistence in mono- and polymicrobial biofilms impose a critical healthcare challenge. Metal nanoparticles, particularly silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs), offer potent antimicrobial activity but face limitations due to their complex synthetic protocols, reliance on external reducing agents and surfactants, resulting compromised biocompatibility and poor in vivo outcomes. Herein, we present a facile, biocompatible approach for synthesizing antimicrobial supramolecular nanocomposite hydrogels (ASNH) via a one-pot, aqueous process that enables in situ growth of AgNPs and AuNPs through supramolecular interactions with short peptides. Utilizing sunlight photoirradiation, these hydrogels eliminate external reducing agents while serving as stabilizers for nanoparticle formation. The metallohydrogels exhibit rapid and broadspectrum antimicrobial activity, against multidrug resistant bacteria and fungi. In addition to disrupting single species biofilms, the optimal hydrogels significantly eradicate polymicrobial biofilms formed by MRSA and Candida albicans. The hydrogels achieve ≥1.5-log reduction in microbial viability, outperforming last resort antibiotics and commercial silver-based ointments. In vivo studies demonstrate accelerated wound healing by reducing bacterial burden and mitigating inflammatory responses, while enhancing neovascularization, granulation, fibroblast proliferation, collagen deposition and epithelialization. The mild, economical synthesis and robust antimicrobial efficacy of these peptide-based metallohydrogels underscore their clinical potential as next-generation biomaterials for polymicrobial biofilm-associated infections.es_ES
dc.description.sponsorshipMICIU/AEI/10.13039/501100011033 (PID2020-118498GB-I00, PID2023-150318NB-I00)es_ES
dc.description.sponsorshipFEDER–Junta de Andalucía–Consejería de Transformación Económica, Industria, Conocimiento y Universidades (P18-FR-3533, A-FQM-340-UGR20)es_ES
dc.language.isoenges_ES
dc.publisherRoyal Society of Chemistryes_ES
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.titleShort-peptide based supramolecular nanocomposite hydrogels for the disruption of polymicrobial biofilms and accelerated infected wound healinges_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1039/d5bm00761e
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial 4.0 Internacional