Mostrar el registro sencillo del ítem

dc.contributor.authorOrtegon-Sarmiento, Tatiana
dc.contributor.authorPaderewski Rodríguez, Patricia 
dc.contributor.authorKelouwani, Sousso
dc.contributor.authorGutiérrez Vela, Francisco Luis 
dc.contributor.authorUribe-Quevedo, Álvaro
dc.date.accessioned2025-11-05T08:34:24Z
dc.date.available2025-11-05T08:34:24Z
dc.date.issued2025-10-12
dc.identifier.citationOrtegon-Sarmiento, T.; Paderewski, P.; Kelouwani, S.; Gutierrez-Vela, F.; Uribe-Quevedo, A. VR Human-Centric Winter Lane Detection: Performance and Driving Experience Evaluation. Sensors 2025, 25, 6312. https://doi.org/10.3390/s25206312es_ES
dc.identifier.urihttps://hdl.handle.net/10481/107779
dc.description.abstractDriving in snowy conditions challenges both human drivers and autonomous systems. Snowfall and ice accumulation impair vehicle control and affect driver perception and performance. Road markings are often obscured, forcing drivers to rely on intuition and memory to stay in their lane, which can lead to encroachment into adjacent lanes or sidewalks. Current lane detectors assist in lane keeping, but their performance is compromised by visual disturbances such as ice reflection, snowflake movement, fog, and snow cover. Furthermore, testing these systems with users on actual snowy roads involves risks to driver safety, equipment integrity, and ethical compliance. This study presents a low-cost virtual reality simulation for evaluating winter lane detection in controlled and safe conditions from a human-in-the-loop perspective. Participants drove in a simulated snowy scenario with and without the detector while quantitative and qualitative variables were monitored. Results showed a 49.9% reduction in unintentional lane departures with the detector and significantly improved user experience, as measured by the UEQ-S (p = 0.023, Cohen’s d = 0.72). Participants also reported higher perceived safety, situational awareness, and confidence. These findings highlight the potential of vision-based lane detection systems adapted to winter environments and demonstrate the value of immersive simulations for user-centered testing of ADASs.es_ES
dc.description.sponsorshipCanada Research Chair Program – CRC-950-232172 (CRC-2018-00299)es_ES
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canada (NSERC) – Discovery Grants (RGPIN-2018-05917, CRSNG-RGPIN-2019-07206, CRSNG-RGPAS-2019-00114)es_ES
dc.description.sponsorshipMCIN/AEI/10.13039/501100011033, UE – PLEISAR-Social project (PID2022-136779OB-C33)es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectLane detectiones_ES
dc.subjectwinter weatheres_ES
dc.subjectvirtual reality simulationes_ES
dc.titleVR Human-Centric Winter Lane Detection: Performance and Driving Experience Evaluationes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/s25206312
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional