• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Teoría de la Señal, Telemática y Comunicaciones
  • DTSTC - Artículos
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Teoría de la Señal, Telemática y Comunicaciones
  • DTSTC - Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

An AI-driven Automated Tool for Effective Identification of Victims' Personal Information in Ransomware Data Breaches

[PDF] electronics-14-04327.pdf (3.450Mb)
Identificadores
URI: https://hdl.handle.net/10481/107778
DOI: 10.3390/electronics14214327
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Tejada Triviño, Juan Manuel; Castillo Fernández, Elvira; García Teodoro, Pedro; Gómez Hernández, José Antonio
Editorial
MDPI
Materia
Ransomware
 
Data breach
 
Leak
 
LMM
 
Fecha
2025-11-04
Referencia bibliográfica
Electronics, 14(21), 4327, Special Issue "Digital Security and Privacy Protection: Trends and Applications, 2nd Edition"
Resumen
Ransomware attacks are increasingly resulting in the public leakage of sensitive personal data, affecting both individuals and organizations worldwide. Aimed to inform victims when their personal information is compromised, this paper introduces RDBAlert, a rapid and efficient practical tool that automates the extraction of multimodal personal data from ransomware leak repositories, enabling victims to mitigate damage early and take necessary precautions to protect themselves from further harm. The comprehensive and modular nature of this novel tool contributes several notable features: (i) automation of ransomware data leak detection; (ii) analysis of information in multiple formats and languages by integrating well-known OCR, text/PDF, and image recognition, as well as multimodal currently available AI-related tools; (iii) user-friendly interface for quick and efficient analysis; and (iv) ability to gather forensic evidence for studying security incidents. In addition to the flexible nature of RDBAlert–as each module can be replaced or upgraded with potentially more effective solutions without impacting the overall service–experimental results show that it is highly effective at identifying personal information, which will contribute to the mitigation of ransomware attack consequences.
Colecciones
  • DTSTC - Artículos

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias