Mostrar el registro sencillo del ítem

dc.contributor.authorHerrera-Granda, Erick P.
dc.contributor.authorTorres-Cantero, Juan C.
dc.contributor.authorHerrera-Granda, Israel D.
dc.contributor.authorLucio-Naranjo, José F
dc.date.accessioned2025-11-04T09:41:38Z
dc.date.available2025-11-04T09:41:38Z
dc.date.issued2025-10-19
dc.identifier.citationHerrera-Granda, E.P.; Torres-Cantero, J.C.; Herrera-Granda, I.D.; Lucio-Naranjo, J.F.; Rosales, A.; Revelo-Fuelagán, J.; Peluffo-Ordóñez, D.H. Deep-DSO: Improving Mapping of Direct Sparse Odometry Using CNN-Based Single-Image Depth Estimation. Mathematics 2025, 13, 3330. https://doi.org/10.3390/math13203330es_ES
dc.identifier.urihttps://hdl.handle.net/10481/107732
dc.description.abstractIn recent years, SLAM, visual odometry, and structure-from-motion approaches have widely addressed the problems of 3D reconstruction and ego-motion estimation. Of the many input modalities that can be used to solve these ill-posed problems, the pure visual alternative using a single monocular RGB camera has attracted the attention of multiple researchers due to its low cost and widespread availability in handheld devices. One of the best proposals currently available is the Direct Sparse Odometry (DSO) system, which has demonstrated the ability to accurately recover trajectories and depth maps using monocular sequences as the only source of information. Given the impressive advances in single-image depth estimation using neural networks, this work proposes an extension of the DSO system, named DeepDSO. DeepDSO effectively integrates the state-of-the-art NeW CRF neural network as a depth estimation module, providing depth prior information for each candidate point. This reduces the point search interval over the epipolar line. This integration improves the DSO algorithm’s depth point initialization and allows each proposed point to converge faster to its true depth. Experimentation carried out in the TUMMono dataset demonstrated that adding the neural network depth estimation module to the DSO pipeline significantly reduced rotation, translation, scale, start-segment alignment, end-segment alignment, and RMSE errors.es_ES
dc.description.sponsorshipCropID Project (Ref. AS No. 25)es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectCNN direct sparse odometryes_ES
dc.subjectMonocular visual odometryes_ES
dc.subjectMonocular 3D reconstructiones_ES
dc.titleDeep-DSO: Improving Mapping of Direct Sparse Odometry Using CNN-Based Single-Image Depth Estimationes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/math13203330
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional