Afficher la notice abrégée

dc.contributor.authorNalepka, Kinga
dc.contributor.authorBerent, Katarzyna
dc.contributor.authorStrag, Martyna
dc.contributor.authorCheca González, Antonio G. 
dc.contributor.authorPetrzak, Paweł
dc.contributor.authorBieda, Magdalena
dc.contributor.authorSztwiertnia, Krzysztof
dc.date.accessioned2025-11-04T09:29:24Z
dc.date.available2025-11-04T09:29:24Z
dc.date.issued2025-11
dc.identifier.citationNalepka, K., Berent, K., Strąg, M., Checa, A. G., Petrzak, P., Bieda, M., & Sztwiertnia, K. (2025). Energy-driven microstructure and mechanical properties of mineral-organic biocomposite - Pteria penguin shell. Materials & Design, 259(114948), 114948. https://doi.org/10.1016/j.matdes.2025.114948es_ES
dc.identifier.urihttps://hdl.handle.net/10481/107730
dc.description.abstractThe high performance of biocomposites largely stems from their ability to self-organize. Our research on the Pteria penguin reveals a hierarchical columnar calcitic (CC) microstructure essential to its mechanical properties. Electron backscatter diffraction shows that each column constitutes a near-to-single-crystal composed of nanounits. Growth is stress-assisted, causing one-sided bending and considerable orientation differences between the top and bottom of columns. The arising stresses are efficiently relaxed by using division along low-energy planes. The detected phenomenon can underlie the branching process observed in more advanced microstructures resulting from species’ adaptations over time. The stresses can also be reduced by the frequent formation of unusual twins resembling intra-columnar flow zones. Using a custom program to detect crystal lattice matching in reciprocal space reveals that a low-energy plane initiating a well-developed column is used by the neighbors, forming coherence zones. Long-range hierarchical order is also supported by the organic matrix with hexagonal channels, geometrically compatible with calcite crystals. Consequently, columns with the same orientation or in twin relation, based on a 60◦ rotation around the c-axis, are formed in a direct neighborhood or at a distance. The final biocomposite structure enables effective load transfer and crack suppression, achieving a notable compressive strength of 670 MPa, despite being built from weak components. The developed programs for identifying microstructural cohesion in crystalline materials allow the implementation of the discovered universal rules of hierarchical self-organization in 3D printing technology. This process can be enhanced by artificial intelligence (AI)-accelerated multiscale simulations.es_ES
dc.description.sponsorshipPolish National Science Center - (UMO-2018/29/B/ST8/02200PID2020)es_ES
dc.description.sponsorshipMCIN/AEI/10.13039/501100011033, FEDER (PID2020-116660GB-I00, PID2023-146394NB-I00)es_ES
dc.description.sponsorshipJunta de Andalucía, Consejería de Economía, Innovación, Ciencia y Empleo - (PCM00092, RNM363)es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectBiocompositees_ES
dc.subjectMollusk shellses_ES
dc.subjectOrganic matrixes_ES
dc.titleEnergy-driven microstructure and mechanical properties of mineral-organic biocomposite - Pteria penguin shelles_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.matdes.2025.114948
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional