Mostrar el registro sencillo del ítem

dc.contributor.authorArvizu Montes, Armando
dc.contributor.authorGuerrero Bustamante, Oswaldo
dc.contributor.authorPolo Mendoza, Rodrigo
dc.contributor.authorMartínez-Echevarría Romero, María José 
dc.date.accessioned2025-10-29T11:48:51Z
dc.date.available2025-10-29T11:48:51Z
dc.date.issued2025-09-14
dc.identifier.citationArvizu-Montes, A.; Guerrero-Bustamante, O.; PoloMendoza, R.; Martinez-Echevarria, M.J. Integrating Life-Cycle Assessment (LCA) and Artificial Neural Networks (ANNs) for Optimizing the Inclusion of Supplementary Cementitious Materials (SCMs) in Eco-Friendly Cementitious Composites: A Literature Review. Materials 2025, 18, 4307. https://doi.org/10.3390/ma18184307es_ES
dc.identifier.urihttps://hdl.handle.net/10481/107572
dc.description.abstractThe construction industry is a major contributor to global environmental impacts, particularly through the production and use of cement-based materials. In response to this challenge, this study provides a comprehensive synthesis of recent advances in the integration of Life-Cycle Assessment (LCA) and Artificial Neural Networks (ANNs) for optimizing cementitious composites containing Supplementary Cementitious Materials (SCMs). A total of 14 case studies specifically addressing this topic were identified, reviewed, and analyzed, spanning various binder compositions, ANN architectures, and LCA frameworks. The findings highlight how hybrid ANN–LCA systems can accurately predict mechanical performance while minimizing environmental burdens, supporting the formulation of low-carbon, high-performance cementitious composites. The diverse SCMs explored, including fly ash, slag, silica fume, waste glass powder, and rice husk ash, demonstrate significant potential for reducing CO2 emissions, energy consumption, and raw material depletion. Furthermore, the systematic comparative matrix developed in this work offers a valuable reference for researchers and practitioners aiming to implement intelligent, eco-efficient mix designs. Overall, this study contributes to advancing digital sustainability tools and reinforces the viability of ANN–LCA integration as a scalable decision-support framework for green construction practices.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectArtificial Neural Networkses_ES
dc.subjectcement sustainabilityes_ES
dc.subjectLife-cycle assessmentes_ES
dc.titleIntegrating Life-Cycle Assessment (LCA) and Artificial Neural Networks (ANNs) for Optimizing the Inclusion of Supplementary Cementitious Materials (SCMs) in Eco-Friendly Cementitious Composites: A Literature Reviewes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/ma18184307
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional