Show simple item record

dc.contributor.authorDíaz García, José Ángel 
dc.contributor.authorDíaz López, Julio Amador
dc.date.accessioned2025-10-29T11:05:18Z
dc.date.available2025-10-29T11:05:18Z
dc.date.issued2025-07-01
dc.identifier.citationDiaz-Garcia, J. A., & Lopez, J. A. D. (2025). A survey on cutting-edge relation extraction techniques based on language models. Artificial Intelligence Review, 58(9), 287. https://doi.org/10.1007/s10462-025-11280-0es_ES
dc.identifier.urihttps://hdl.handle.net/10481/107566
dc.descriptionThe research reported in this paper was supported by the DesinfoScan project: Grant TED2021-129402B-C21 funded by MCIN /AEI/ 10.13039/ 501100011033 and, by the European Union NextGenerationEU/PRTR, and FederaMed project: Grant PID2021-123960OB-I00 funded by MCIN/ AEI/ 10.13039/501100011033 and by ERDF A way of making Europe. Finally, the research reported in this paper is also funded by the European Union (BAG-INTEL project, grant agreement no. 101121309). Funding for open access publishing: Universidad de Granada/CBUA.es_ES
dc.description.abstractThis comprehensive survey examines the latest advancements in Relation Extraction (RE), a pivotal task in natural language processing essential for applications across biomedical, financial, and legal sectors. This study highlights the evolution and current state of RE techniques by analyzing 137 papers presented at the Association for Computational Linguistics (ACL) conferences from 2020 to 2023, focusing on models that leverage language models. Our findings underscore the dominance of BERT-based methods in achieving state-of-the-art results for RE while also noting the promising capabilities of emerging Large Language Models (LLMs) like T5, especially in few-shot relation extraction scenarios where they excel in identifying previously unseen relations.es_ES
dc.description.sponsorshipMCIN/AEI/10.13039/501100011033 TED2021-129402B-C21, PID2021-123960OB-I00es_ES
dc.description.sponsorshipEuropean Union NextGenerationEU/PRTRes_ES
dc.description.sponsorshipERDF A way of making Europees_ES
dc.description.sponsorshipEuropean Union (BAG-INTEL 101121309)es_ES
dc.description.sponsorshipUniversidad de Granada/CBUAes_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licensees_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectRelation extractiones_ES
dc.subjectNLPes_ES
dc.subjectmodelos de lenguajees_ES
dc.titleA survey on cutting-edge relation extraction techniques based on language modelses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/s10462-025-11280-0
dc.type.hasVersionVoRes_ES


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Except where otherwise noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License