Mostrar el registro sencillo del ítem

dc.contributor.authorMorcillo-Jimenez, Roberto
dc.contributor.authorRivas Bravo, María José 
dc.contributor.authorRuiz Jiménez, María Dolores 
dc.contributor.authorMartin-Bautista, Maria J.
dc.contributor.authorFernandez-Basso, Carlos
dc.date.accessioned2025-10-29T09:24:11Z
dc.date.available2025-10-29T09:24:11Z
dc.date.issued2025-11
dc.identifier.citationMorcillo-Jimenez, R., Rivas, J. M., Ruiz, M. D., Martin-Bautista, M. J., & Fernandez-Basso, C. (2025). Privacy-preserving energy analytics in smart offices via container-based Federated Learning. Internet of Things (Amsterdam, Netherlands), 34(101782), 101782. https://doi.org/10.1016/j.iot.2025.101782es_ES
dc.identifier.urihttps://hdl.handle.net/10481/107548
dc.description.abstractFederated Learning (FL) has emerged as a promising paradigm to enable privacy-preserving machine learning across distributed IoT devices. This work relies on SimulaFed, a container-based in-simulation framework for FL that is readily applicable to IoT scenarios. It leverages real-world energy data from an office building in which environmental and occupancy parameters were monitored by an IoT system. Our framework performs distributed model training that preserves occupant privacy without incurring prohibitive communication overhead and benchmarks four aggregation rules–Federated Averaging (FedAvg), Federated Proximal (FedProx), FedAdam, and SCAFFOLD. Using ≈262 000 hourly windows and a lightweight 1-D CNN (≈0.35 M parameters; 354 488 weights), we benchmarked four aggregation rules. FedProx, with a tuned proximity term (μ = 0.05), achieved the lowest MAE: 0.755 ± 0.000, marginally ahead of FedAvg (0.764 ± 0.084) by 1.2%. SCAFFOLD delivered accuracy comparable to FedAvg (MAE 0.771 ± 0.042) but with a higher runtime footprint; FedAdam increased computational cost without accuracy gains. Each update payload is about 1.4 MB per client; across 17 clients and 10 rounds (upload + broadcast) this totals ≈480 MB. Detailed CPU/memory telemetry is reported in Section 4 and Table 13. These results confirm the viability of SimulaFed as a rapid-prototyping platform for energyaware FL in smart offices, paving the way for deployments that balance data confidentiality, prediction accuracy and resource usage.es_ES
dc.description.sponsorshipMCIU/AEI/10.13039/501100011033 and ERDF/EU (PID2024-158373OB-I00 – FederaTrans project)es_ES
dc.description.sponsorshipMCIU/AEI/10.13039/501100011033 and European Union, NextGeneration EU/PRTR (DesinfoScan project – TED2021-129402B-C21)es_ES
dc.description.sponsorshipEuropean Union (BAG-INTEL project – Grant Agreement No. 101121309)es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectFederated learninges_ES
dc.subjectInternet of Things (IoT)es_ES
dc.subjectSmart officeses_ES
dc.titlePrivacy-preserving energy analytics in smart offices via container-based Federated Learninges_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EU/PRTR/TED2021-129402B-C21es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.iot.2025.101782
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional