Afficher la notice abrégée

dc.contributor.authorDurán López, Alberto
dc.contributor.authorBolaños Martinez, Daniel
dc.contributor.authorAlmahmoud, Zaid
dc.contributor.authorChandresh, Pravin
dc.contributor.authorDe, Suparna
dc.contributor.authorBermúdez Edo, María del Campo 
dc.date.accessioned2025-10-27T09:36:20Z
dc.date.available2025-10-27T09:36:20Z
dc.date.issued2025-08-15
dc.identifier.citationA. Durán-López, D. Bolaños-Martinez, Z. Almahmoud, C. Pravin, S. De and M. Bermudez-Edo, "Route Optimization in Smart Villages: A Graph Neural Network Approach," in IEEE Internet of Things Journal, vol. 12, no. 21, pp. 45235-45248, 1 Nov.1, 2025.es_ES
dc.identifier.urihttps://hdl.handle.net/10481/107466
dc.description.abstractIn the Internet of Things (IoT) domain, modeling the intricate relationships within spatiotemporal data from sensors is a significant challenge. Conventional methods, which often rely on tabular or time-series formats, frequently fail to capture the underlying complex dynamics. In contrast, graph-based representations excel at this task, but they have seldom been explored in tourism and remain unexplored in small villages, where IoT networks involve only a handful of sensors or nodes. We propose an explainable and optimized graph neural network (GNN) methodology to predict return visits in smart villages. We collected data from License Plate Recognition cameras across three villages, tracking 467 773 distinct vehicles over 2 years and 11 months. For each vehicle, we construct a unique graph that maps its specific route across all cameras. We conduct a comprehensive study of various GNN architectures, including spectral, spatial, recurrent, and attention-based models, with a special focus on the impact of incorporating edge features. We also apply explainability methods to identify the most influential graph components driving model predictions. To optimize performance, we integrate neural architecture search and hyperparameter optimization (NAS-HPO) using a multivariate objective that maximizes the F1-score while minimizing computational time. Analysis of the results reveals that models using edge attributes perform better; specifically, the edge-featured graph attention network (E-GAT) model. We apply the NAS-HPO approach to this E-GAT base model, and the improved version achieves the highest performance across all metrics, demonstrating a 5.71% improvement in F1-score and a 20.87% decrease in execution time.es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectExplainabilityes_ES
dc.subjectgraph neural network (GNN)es_ES
dc.subjectInternet of Things (IoT)es_ES
dc.subjectNAS and hyperparameter optimization (NAS-HPO)es_ES
dc.titleRoute Optimization in Smart Villages: A Graph Neural Network Approaches_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttps://doi.org/10.1109/JIOT.2025.3599235


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional