Mostrar el registro sencillo del ítem

dc.contributor.authorEiraudo, Simone
dc.contributor.authorGijón, Alfonso
dc.contributor.authorManjavacas, Antonio
dc.contributor.authorSchiera, Daniele Salvatore
dc.contributor.authorBarbierato, Luca
dc.contributor.authorMolina Solana, Miguel José 
dc.contributor.authorGómez Romero, Juan 
dc.contributor.authorGiannantonio, Roberta
dc.contributor.authorBottaccioli, Lorenzo
dc.contributor.authorLanzini, Andrea
dc.date.accessioned2025-10-27T09:08:15Z
dc.date.available2025-10-27T09:08:15Z
dc.date.issued2025-12-01
dc.identifier.citationEiraudo, S., Gijón, A., Manjavacas, A., Schiera, D. S., Barbierato, L., Molina-Solana, M., Gómez-Romero, J., Giannantonio, R., Bottaccioli, L., & Lanzini, A. (2025). Experimental application of a semi-parametric model for interpretable and accurate egression analysis of building energy consumption. Energy and Buildings, 349(116495), 116495. https://doi.org/10.1016/j.enbuild.2025.116495es_ES
dc.identifier.urihttps://hdl.handle.net/10481/107457
dc.description.abstractRegression analysis is a versatile tool with numerous applications across diverse domains. Its utility extends to several tasks, including forecasting, inverse modeling, anomaly detection, and pattern identification. Over the years, researchers have mainly focused on two regression categories: parametric and non-parametric analysis. In light of the benefits and drawbacks of both methods, this work introduces a semi-parametric approach, combining regression accuracy and interpretability. This is achieved by designing a hybrid model, that includes a physics-based sub-model and a neural network. The proposed data-driven pipeline is applied to a relevant case study from the energy sector, namely the analysis of building energy consumption, achieving high accuracy compared to the parametric approach. Results demonstrate an increase in the mean coefficient of determination, from 0.77 to 0.94, with a MAPE drop from 5.5 % to 2.2 %. Meanwhile, the semi-parametric model allows the assessment of the thermal behavior of the buildings, thereby offering an improvement over black-box approaches.es_ES
dc.description.sponsorshipEuropean Union NextGenerationEU/PRTR - Spanish Ministry of Economic Affairs and Digital Transformation (IA4TES project, MIA.2021.M04.0008)es_ES
dc.description.sponsorshipFEDER/Junta de Andalucía – (D3S project, P21.00247; SE2021 UGR IFMIF-DONES)es_ES
dc.description.sponsorshipMICIU/AEI/10.13039/501100011033 (SINERGY project, PID2021.125537NA.I00)es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectSemi-parametric modelses_ES
dc.subjectRegression analysis es_ES
dc.subjectHybrid modelses_ES
dc.titleExperimental application of a semi-parametric model for interpretable and accurate egression analysis of building energy consumptiones_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EU/PRTR/MIA.2021.M04.0008es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.enbuild.2025.116495
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional