Mostrar el registro sencillo del ítem

dc.contributor.authorAbuhamda, Yousef
dc.contributor.authorGarcía Teodoro, Pedro 
dc.date.accessioned2025-10-24T08:44:17Z
dc.date.available2025-10-24T08:44:17Z
dc.date.issued2025-10
dc.identifier.citationApplied Sciences, 15(21), 11323, Special Issue "Novel Applications of Machine Learning and Bayesian Optimization, 2nd Edition"es_ES
dc.identifier.urihttps://hdl.handle.net/10481/107403
dc.description.abstractCyberbullying and hate-driven behavior on social media have become increasingly prevalent, posing serious psychological and social risks. This study proposes a machine learning-based approach to detect hate-driven content by integrating temporal and behavioral features—such as message frequency, interaction duration, and user activity patterns—alongside traditional text-based features. Furthermore, we extend our evaluation to include recent neural network architectures, namely ALBERT and BiLSTM, enabling a more robust representation of semantic and sequential patterns. Building on our previous research presented at JNIC-2024, we conduct a comparative evaluation of multiple classification algorithms using both existing and engineered datasets. The results show that incorporating non-textual features significantly improves detection accuracy and robustness. This work contributes to the development of intelligent cyberbullying detection systems and highlights the importance of behavioral context in online threat analysis.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es_ES
dc.subjecthate-driven violencees_ES
dc.subjectsocial mediaes_ES
dc.subjectmachine learninges_ES
dc.titleMachine Learning Approaches for Detecting Hate-Driven Violence on Social Mediaes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttps://doi.org/10.3390/app152111323
dc.type.hasVersionAMes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License