Mostrar el registro sencillo del ítem

dc.contributor.authorCapel Tuñón, Manuel Isidoro 
dc.contributor.authorRodríguez Domingo, Luis
dc.date.accessioned2025-10-23T10:39:37Z
dc.date.available2025-10-23T10:39:37Z
dc.date.issued2025-09-11
dc.identifier.urihttps://hdl.handle.net/10481/107355
dc.description.abstractEfficient simulation of tumor growth using cellular automata (CA) requires high computational power, especially when scaling to large biological systems. In this paper, we present a GPU-accelerated dynamic load balancing strategy for tumor growth simulation, using CUDA to optimize execution and scalability. We compare our approach with traditional CPU implementations and static load balancing methods, and demonstrate significant performance gains. Our results show that the proposed strategy reduces execution time by up to 54% for a 1024×1024 grid of CUDA thread blocks while maintaining accuracy, making it a promising approach for large-scale biomedical simulations.es_ES
dc.language.isoenges_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectcellular automataes_ES
dc.subjecttumor growth modeles_ES
dc.subjectCUDAes_ES
dc.subjectparallelizationes_ES
dc.titleProbabilistic Algorithm with Dynamic Load Balancing for GPU-Accelerated Tumor Growth Simulationses_ES
dc.typepreprintes_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.20944/preprints202509.1003.v1
dc.type.hasVersionAOes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional