Afficher la notice abrégée

dc.contributor.authorHernández-Montes, Enrique
dc.contributor.authorJalón, María Lourdes
dc.contributor.authorRodríguez-Romero, Rubén
dc.contributor.authorChiachío, Juan
dc.contributor.authorCompán-Cardiel, Víctor
dc.contributor.authorGil-Martín, Luisa María 
dc.date.accessioned2025-10-21T06:14:26Z
dc.date.available2025-10-21T06:14:26Z
dc.date.issued2023
dc.identifier.citationISSN 0141-0296es_ES
dc.identifier.urihttps://hdl.handle.net/10481/107196
dc.description.abstractThe deterioration of Cultural Heritage assets caused by the natural hazards is a pressing issue in many countries. Therefore, reliable models based on the large-scale structural response of the assets is key to assess their resilience. However, reliable models such as large and detailed Finite Element (FE) models, require a large number of data and input parameters. This paper proposes a Bayesian learning approach to identify the main parameters of a FE model with quantified uncertainty based on ambient vibration data. As a novelty when compared with other Bayesian structural parameter identification methods from ambient vibration data, here the likelihood function is formulated in a principled way considering information from both frequencies and modes using a probabilistic version of the Modal Assurance Criterion for the modes. This method is embedded into a parameterised computational model to automate the simulation process, and a real case study for a sixteenth century heritage building in Granada (Spain) is presented. The results show the suitability and effectiveness of the proposed Bayesian approach in identifying the most plausible values of the uncertain model parameters in a rigorous probabilistic way, but also in obtaining the modelled frequencies and the modal assurance criterion values with quantified uncertainty.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleBayesian structural parameter identification from ambient vibration in cultural heritage buildings: The case of the San Jerónimo monastery in Granada, Spaines_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.engstruct.2023.115924
dc.type.hasVersionAMes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional