Mostrar el registro sencillo del ítem

dc.contributor.authorFei, Qinjun
dc.contributor.authorRodríguez Barroso, Nuria
dc.contributor.authorLuzón García, María Victoria 
dc.contributor.authorZhang, Zhongliang
dc.contributor.authorHerrera Triguero, Francisco 
dc.date.accessioned2025-10-20T07:46:31Z
dc.date.available2025-10-20T07:46:31Z
dc.date.issued2026-03
dc.identifier.citationFei, Q., Rodríguez-Barroso, N., Luzón, M. V., Zhang, Z., & Herrera, F. (2026). Addressing data quality decompensation in federated learning via dynamic client selection. Future Generations Computer Systems: FGCS, 176(108138), 108138. https://doi.org/10.1016/j.future.2025.108138es_ES
dc.identifier.urihttps://hdl.handle.net/10481/107151
dc.description.abstractIn cross-silo Federated Learning (FL), client selection is critical to ensure high model performance, yet it remains challenging due to data quality decompensation, budget constraints, and incentive compatibility. As training progresses, these factors exacerbate client heterogeneity and degrade global performance. Most existing approaches treat these challenges in isolation, making it difficult to optimize multiple factors in conjunction. To address this, we propose Shapley-Bid Reputation Optimized Federated Learning (SBRO-FL), a unified framework integrating dynamic bidding, reputation modeling, and cost-aware selection. Clients submit bids based on their perceived data quality, and their contributions are evaluated using Shapley values to quantify their marginal impact on the global model. A reputation system, inspired by prospect theory, captures historical performance while penalizing inconsistency. The client selection problem is formulated as a 0–1 integer program that maximizes reputation-weighted utility under budget constraints. Experiments on four benchmark datasets demonstrate the framework’s effectiveness, improving final model accuracy by an average of 10.3 % over random selection, with gains exceeding 19 % on more complex datasets like CIFAR-10 and SVHN. Our results highlight the importance of balancing data reliability, incentive compatibility, and cost efficiency to enable scalable and trustworthy FL deployments.es_ES
dc.description.sponsorshipNational Natural Science Foundation of China (Grant 72171065)es_ES
dc.description.sponsorshipShaanxi Key Laboratory of Information Communication Network and Security (Open Fund Grant ICNS201807)es_ES
dc.description.sponsorshipInstituto Nacional de Ciberseguridad (INCIBE) – Universidad de Granada - Next Generation EU (Strategic Project IAFER-Cib C074/23)es_ES
dc.description.sponsorshipChina Scholarship Council (Project ID: 202308330099)es_ES
dc.description.sponsorshipUniversidad de Granada / CBUA (Open access)es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectFederated learninges_ES
dc.subjectReputation-based client selectiones_ES
dc.subjectData quality decompensationes_ES
dc.titleAddressing data quality decompensation in federated learning via dynamic client selectiones_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.future.2025.108138
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional