Afficher la notice abrégée

dc.contributor.authorCosta Silva, Luiza Araujo
dc.contributor.authorBaca Ruiz, Luis Gonzaga 
dc.contributor.authorCriado Ramón, David
dc.contributor.authorBessa, Joao Gabriel
dc.contributor.authorMicheli, Leonardo
dc.contributor.authorPegalajar Jiménez, María Del Carmen 
dc.date.accessioned2025-10-20T07:10:14Z
dc.date.available2025-10-20T07:10:14Z
dc.date.issued2023-11
dc.identifier.citationLuiza Araujo Costa Silva, Luis Gonzaga Baca Ruiz, David Criado-Ramón, Joao Gabriel Bessa, Leonardo Micheli, María del Carmen Pegalajar Jiménez, “Assessing the impact of soiling on photovoltaic efficiency using supervised learning techniques”, Expert Systems with Applications, Volume 231, 2023, 120816, ISSN 0957-4174. https://doi.org/10.1016/j.eswa.2023.120816.es_ES
dc.identifier.urihttps://hdl.handle.net/10481/107145
dc.description.abstractThe accumulation of dust and other particles on solar panels, known as soiling, is a significant factor that affects their performance, leading to reduced efficiency if not addressed properly. In this study, we propose a new methodology to estimate soiling on solar photovoltaic panels. To address this issue, we utilised data from the University of Jaén and satellite information from NASA. We applied five different machine learning models, including Linear Regression, Random Forest, Decision Tree, Multilayer Perceptron and Long Short-Term memory neural networks to estimate the extent of soiling on the panels. The input data consisted of weather data, as well as operational data of the solar panels. Our results showed that the MLP model had the lowest average error of 0.0003, indicating its effectiveness in estimating the extent of soiling on the panels. This is significantly lower compared to previous proposals in the literature, which had an average error of 0.026. This study demonstrates the effectiveness of using machine learning methods to forecast soiling on photovoltaic panels accurately. The implications of our findings are essential for optimising energy production and improving the efficiency of solar power systems.es_ES
dc.description.sponsorshipB-TIC-42-UGR20es_ES
dc.description.sponsorshipGrant PID2020-112495RB-C21 funded by MCIN/AEI/10.13039/501100011033es_ES
dc.description.sponsorshipSole4PVes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectPhotovoltaic paneles_ES
dc.subjectsoilinges_ES
dc.subjectsolar panel dirtes_ES
dc.subjectmachine learninges_ES
dc.subjectartificial neural networkses_ES
dc.titleAssessing the impact of soiling on photovoltaic efficiency using supervised learning techniqueses_ES
dc.typepreprintes_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.eswa.2023.120816
dc.type.hasVersionAMes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional