Afficher la notice abrégée

dc.contributor.authorBenito, Nerea
dc.contributor.authorPérez-Martínez, José Carlos
dc.contributor.authorRoldán Aranda, Juan Bautista 
dc.contributor.authorLao, Ángela
dc.contributor.authorUrbina, Antonio
dc.contributor.authorSerrano-Luján, Lucía
dc.date.accessioned2025-10-15T06:35:22Z
dc.date.available2025-10-15T06:35:22Z
dc.date.issued2025-10-10
dc.identifier.citationN. Benito et al. Sustainable Computing: Informatics and Systems 48 (2025) 101229. https://doi.org/10.1016/j.suscom.2025.101229es_ES
dc.identifier.urihttps://hdl.handle.net/10481/107046
dc.descriptionFinancial support is acknowledged from Agencia Estatal de Investigación-Ministerio de Ciencia e Innovación (AEI-MICINN, Spain) through grants TED2021–132368B-C21, PID2022–139586NB-C44 and TED2021–132368A-C22, including European Union funding NextGenerationEU.es_ES
dc.descriptionSupplementary material, https://ars.els-cdn.com/content/image/1-s2.0-S2210537925001507-mmc1.docxes_ES
dc.description.abstractMemristor technologies, pivotal in the evolution of energy-efficient digital devices, have the potential to revolutionize fields like non-volatile memories, hardware cryptography, neuromorphic computing and artificial intelligence acceleration. This study applies Life Cycle Assessment (LCA) methodology to analyse the environmental impact of five memristor designs, focusing on materials and manufacturing processes. The analysis adheres to ISO 14040–44 standards and employs the ReCiPe methodology to evaluate 18 environmental impact categories, emphasizing categories such as freshwater ecotoxicity and global warming potential. The results highlight significant variations in environmental impacts across the designs, largely attributed to differences in active layer materials and manufacturing processes. Molybdenum exhibits the highest impact, particularly in freshwater ecotoxicity, while SiO₂ demonstrates the lowest overall impact. Manufacturing processes like sputtering and photolithography carried out at laboratory scale contribute disproportionately to energy consumption and environmental damage, suggesting that upscaling production to industrial efficiencies is mandatory to mitigate these impacts. Furthermore, several materials required for memristor fabrication are listed as critical by the International Energy Agency (IEA), raising concerns about supply security, resource scarcity and environmental sustainability. This analysis serves as a foundational step for optimizing memristor technologies, balancing performance demands with environmental stewardship. To the best of our knowledge, this is the first comprehensive Life Cycle Assessment that compares multiple memristor architectures using real laboratory data and evaluates their environmental impacts. This work provides a methodological foundation for future sustainability assessments in the context of emerging memory technologies.es_ES
dc.description.sponsorshipAgencia Estatal de Investigación-Ministerio de Ciencia e Innovación (AEI-MICINN, Spain) TED2021–132368B-C21, PID2022–139586NB-C44, TED2021–132368A-C22es_ES
dc.description.sponsorshipNextGenerationEUes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.subjectMemristorses_ES
dc.subjectLife Cycle Assessment (LCA)es_ES
dc.subjectEnvironmental impactes_ES
dc.titleLife cycle assessment of digital memories: The memristor’s environmental footprintes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.suscom.2025.101229
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NoDerivatives 4.0 Internacional