Mostrar el registro sencillo del ítem

dc.contributor.authorDíaz García, José Ángel 
dc.contributor.authorMorales Garzón, Andrea
dc.contributor.authorGutiérrez-Bautista, Karel
dc.contributor.authorMartín Bautista, María José 
dc.date.accessioned2025-10-06T11:35:52Z
dc.date.available2025-10-06T11:35:52Z
dc.date.issued2025-08-27
dc.identifier.citationDiaz-Garcia, J.A.; MoralesGarzón, A.; Gutiérrez-Batista, K.; Martin-Bautista, M.J. Optimising Text Classification in Social Networks via Deep Learning-Based Dimensionality Reduction. Electronics 2025, 14, 3426. https://doi.org/10.3390/electronics14173426es_ES
dc.identifier.urihttps://hdl.handle.net/10481/106841
dc.description.abstractText classification is essential for handling the large volume of user-generated textual content in social networks. Nowadays, dense word representation techniques, especially those yielded by large language models, capture rich semantic and contextual information from text that is useful for classification tasks, but generates high-dimensional vectors that hinder the efficiency and scalability of the classification algorithms. Despite this, limited research has explored effective dimensionality reduction techniques to balance representation quality with computational demands. This study presents a deep learning-based framework for enhancing text classification in social networks, focusing on computational performance, by compressing high-dimensional text representations into a low-dimensional space while retaining essential features for text classification. To demonstrate the feasibility of the proposal, we conduct a benchmarking study using traditional dimensionality reduction techniques on two widely used benchmark datasets. The findings reveal that our approach can substantially improve the efficiency of text classification in social networks without compromising—and, in some cases, enhancing—the predictive performance.es_ES
dc.description.sponsorshipMCIN/AEI/10.13039/501100011033 y ERDF/EU (PID2021-123960OB-I00)es_ES
dc.description.sponsorshipMCIN/AEI/10.13039/501100011033 y European Union — NextGenerationEU/PRTR (TED2021-129402BC21)es_ES
dc.description.sponsorshipConsejería de Transformación Económica, Industria, Conocimiento y Universidades — Junta de Andalucía (PREDOC_00298)es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectDimensionality reductiones_ES
dc.subjectDeep learninges_ES
dc.subjectSocial media mininges_ES
dc.titleOptimising Text Classification in Social Networks via Deep Learning-Based Dimensionality Reductiones_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/electronics14173426
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional