Mostrar el registro sencillo del ítem
Optimising Text Classification in Social Networks via Deep Learning-Based Dimensionality Reduction
| dc.contributor.author | Díaz García, José Ángel | |
| dc.contributor.author | Morales Garzón, Andrea | |
| dc.contributor.author | Gutiérrez-Bautista, Karel | |
| dc.contributor.author | Martín Bautista, María José | |
| dc.date.accessioned | 2025-10-06T11:35:52Z | |
| dc.date.available | 2025-10-06T11:35:52Z | |
| dc.date.issued | 2025-08-27 | |
| dc.identifier.citation | Diaz-Garcia, J.A.; MoralesGarzón, A.; Gutiérrez-Batista, K.; Martin-Bautista, M.J. Optimising Text Classification in Social Networks via Deep Learning-Based Dimensionality Reduction. Electronics 2025, 14, 3426. https://doi.org/10.3390/electronics14173426 | es_ES |
| dc.identifier.uri | https://hdl.handle.net/10481/106841 | |
| dc.description.abstract | Text classification is essential for handling the large volume of user-generated textual content in social networks. Nowadays, dense word representation techniques, especially those yielded by large language models, capture rich semantic and contextual information from text that is useful for classification tasks, but generates high-dimensional vectors that hinder the efficiency and scalability of the classification algorithms. Despite this, limited research has explored effective dimensionality reduction techniques to balance representation quality with computational demands. This study presents a deep learning-based framework for enhancing text classification in social networks, focusing on computational performance, by compressing high-dimensional text representations into a low-dimensional space while retaining essential features for text classification. To demonstrate the feasibility of the proposal, we conduct a benchmarking study using traditional dimensionality reduction techniques on two widely used benchmark datasets. The findings reveal that our approach can substantially improve the efficiency of text classification in social networks without compromising—and, in some cases, enhancing—the predictive performance. | es_ES |
| dc.description.sponsorship | MCIN/AEI/10.13039/501100011033 y ERDF/EU (PID2021-123960OB-I00) | es_ES |
| dc.description.sponsorship | MCIN/AEI/10.13039/501100011033 y European Union — NextGenerationEU/PRTR (TED2021-129402BC21) | es_ES |
| dc.description.sponsorship | Consejería de Transformación Económica, Industria, Conocimiento y Universidades — Junta de Andalucía (PREDOC_00298) | es_ES |
| dc.language.iso | eng | es_ES |
| dc.publisher | MDPI | es_ES |
| dc.rights | Atribución 4.0 Internacional | * |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
| dc.subject | Dimensionality reduction | es_ES |
| dc.subject | Deep learning | es_ES |
| dc.subject | Social media mining | es_ES |
| dc.title | Optimising Text Classification in Social Networks via Deep Learning-Based Dimensionality Reduction | es_ES |
| dc.type | journal article | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.identifier.doi | 10.3390/electronics14173426 | |
| dc.type.hasVersion | VoR | es_ES |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
OpenAIRE (Open Access Infrastructure for Research in Europe)
Publicaciones financiadas por Framework Programme 7, Horizonte 2020, Horizonte Europa... del European Research Council de la Unión Europea en el marco del Proyecto OpenAIRE que promueve el acceso abierto a Europa.
