Afficher la notice abrégée

dc.contributor.authorLuque-Hernández, Francisco Javier
dc.contributor.authorAquino-Brítez, Sergio
dc.contributor.authorDíaz-Álvarez, Josefa
dc.contributor.authorGarcía-Sánchez, Pablo 
dc.date.accessioned2025-09-24T08:08:42Z
dc.date.available2025-09-24T08:08:42Z
dc.date.issued2025-09-22
dc.identifier.citationLuque-Hernández, F.J.; Aquino-Britez, S. ; Díaz-Álvarez, J.; García-Sánchez , P. A Comparison of Energy Consumption and Quality of Solutions in Evolutionary Algorithms. Algorithms 2025, 18, 593. https://doi.org/10.3390/a18090593es_ES
dc.identifier.urihttps://hdl.handle.net/10481/106585
dc.description.abstractEvolutionary algorithms are extensively used to solve optimisation problems. However, it is important to consider and reduce their energy consumption, bearing in mind that programming languages also significantly affect energy efficiency. This research work compares the execution of four frameworks—ParadisEO (C++ ), ECJ (Java), DEAPand Inspyred (Python)—running on two different architectures: a laptop and a server. The study follows a design that combines three population sizes (2 6 , 2 10 , 2 14 individuals) and three crossover probabilities (0.01; 0.2; 0.8) applied to four benchmarks (OneMax, Sphere, Rosenbrock and Schwefel). This work makes a relevant methodological contribution by providing a consistent implementation of the metric η = f itness/kWh. This metric has been systematically applied in four different frameworks, thereby setting up a standardized and replicable protocol for the evaluation of the energy efficiency of evolutionary algorithms. The CodeCarbon software was used to estimate energy consumption, which was measured using RAPL counters. This unified metric also indicates the algorithmic productivity. The experimental results show that the server speeds up the number of generations by a factor of approximately 2.5, but the energy consumption increases four- to sevenfold. Therefore, on average, the energy efficiency of the laptop is five times higher. The results confirm the following conclusions: the computer power does not guarantee sustainability, and population size is a key factor in balancing quality and energy.es_ES
dc.description.sponsorshipMICIU/AEI/10.13039/501100011033 - FEDER/UE (PID2023-147409NBC21 and PID2023-147409NB-C22)es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectEnergy-aware computinges_ES
dc.subjectFrameworkses_ES
dc.subjectEvolutionary Algorithmses_ES
dc.titleA Comparison of Energy Consumption and Quality of Solutions in Evolutionary Algorithmes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/a18090593
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional