Show simple item record

dc.contributor.authorJimenez-Perera, Gabriel
dc.contributor.authorValencia Vidal, Brayan
dc.contributor.authorLuque Sola, Niceto Rafael 
dc.contributor.authorRos Vidal, Eduardo 
dc.contributor.authorBarranco Expósito, Francisco 
dc.date.accessioned2025-09-17T09:58:39Z
dc.date.available2025-09-17T09:58:39Z
dc.date.issued2025-09-10
dc.identifier.citationG. Jimenez-Perera, B. Valencia-Vidal, N. R. Luque, E. Ros and F. Barranco, "Informed Federated Learning to Train a Robotic Arm Inverse Dynamic Model," in IEEE Robotics and Automation Letters, vol. 10, no. 10, pp. 11022-11029, Oct. 2025, doi: 10.1109/LRA.2025.3608659es_ES
dc.identifier.urihttps://hdl.handle.net/10481/106390
dc.description.abstractAccess to real-world data in robotics domains is often challenging due to restrictions on data sharing and limited availability. Although privacy and intellectual property concerns are the main barriers, ensuring data access is crucial for advancing data-driven models. Specifically, machine-learning-based inverse dynamic models show promising results for nonrigid robot identification, but the data used to train them are often kept private due to intellectual property protections. Federated learning proposes a methodology to access such data without centralizing them in a single repository, thus avoiding intellectual property limitations. We propose a solution that uses federated learning to train a model from distributed data to develop a robust robotic arm inverse dynamic model. Our approach demonstrates the feasibility of using a machine learning method in which local robots train on their own data while collaborating without sharing raw information. Furthermore, we propose a novel custom aggregation method that integrates locally learned solutions from different workspaces into a single global model without requiring raw data sharing. This method improves accuracy in our federated solution by approximately 20% for the learned inverse dynamic model.es_ES
dc.description.sponsorshipConsejería de Transformación Económica, Industria, Conocimiento y Universidades de la Junta de Andalucíaes_ES
dc.description.sponsorshipColombian Ministry of Science, Technology, and Innovationes_ES
dc.description.sponsorshipSpanish National Grant PID2022-141466OB-I00es_ES
dc.description.sponsorshipUniversidad de Granada / CBUAes_ES
dc.language.isoenges_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectCollaborative robotses_ES
dc.subjectRobotses_ES
dc.subjectData modelses_ES
dc.subjectTraininges_ES
dc.subjectIntellectual property es_ES
dc.subjectFederated learninges_ES
dc.subjectTrajectoryes_ES
dc.subjectServerses_ES
dc.subjectDistributed databaseses_ES
dc.subjectData privacyes_ES
dc.subjectDeep learning methodses_ES
dc.subjectData sets for robot learninges_ES
dc.titleInformed Federated Learning to Train a Robotic Arm Inverse Dynamic Modeles_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/LRA.2025.3608659
dc.type.hasVersionAMes_ES


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Atribución 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional