Horo-shrinkers in the Hyperbolic Space
Metadatos
Mostrar el registro completo del ítemEditorial
Mathematical Society of the Republic of China
Fecha
2025-08Referencia bibliográfica
Antonio Bueno. Rafael López. "Horo-shrinkers in the Hyperbolic Space." Taiwanese J. Math. Advance Publication 1 - 23, 2025. https://doi.org/10.11650/tjm/250707
Patrocinador
MCIN/AEI/10.13039/501100011033/ - ERDF (PID2021-124157NB-I00); CARM, Programa Regional de Fomento de la Investigación, Fundación Séneca-Agencia de Ciencia y Tecnología Región de Murcia (reference 21937/PI/22); MINECO/MICINN/FEDER (grant no. PID2023-150727NB-I00); MCINN/AEI/10.13039/501100011033 - “María de Maeztu” Excellence Unit IMAG (CEX2020-001105-M)Resumen
A surface
Σ
in the hyperbolic space
H
3
is called a horo-shrinker if its mean curvature
H
satisfies
H
=
⟨
N
,
∂
z
⟩
, where
(
x
,
y
,
z
)
are the coordinates of
H
3
in the upper half-space model and
N
is the unit normal of
Σ
. In this paper we study horo-shrinkers invariant by one-parameter groups of isometries of
H
3
depending if these isometries are hyperbolic, parabolic or spherical. We characterize totally geodesic planes as the only horo-shrinkers invariant by a one-parameter group of hyperbolic translations along vertical geodesic tangent to
∂
z
. The grim reapers are defined as the horo-shrinkers invariant by a one-parameter group of parabolic translations perpendicular to
∂
z
. We describe the geometry of the grim reapers proving that they are periodic surfaces. In the last part of the paper, we give a complete classification of horo-shrinkers invariant by spherical rotations about the
z
-axis, distinguishing if the surfaces intersect or not the rotation axis.





