Show simple item record

dc.contributor.authorLi, Lei
dc.contributor.authorLiu, Siyu
dc.contributor.authorPeralta Pereira, Antonio Miguel 
dc.date.accessioned2025-09-15T08:35:26Z
dc.date.available2025-09-15T08:35:26Z
dc.date.issued2025-08-01
dc.identifier.citationLi, L., Liu, S. & Peralta, A.M. An algebraic characterization of linearity for additive maps preserving orthogonality. Ann. Funct. Anal. 16, 62 (2025). https://doi.org/10.1007/s43034-025-00454-0es_ES
dc.identifier.urihttps://hdl.handle.net/10481/106307
dc.description.abstractAbstract We study when an additive mapping preserving orthogonality between two complex inner product spaces is automatically complex-linear or conjugate-linear. Concretely, let H and K be complex inner product spaces with dim(H) ≥ 2, and let A ∶ H → K be an additive map preserving orthogonality. We obtain that A is zero or a positive scalar multiple of a real-linear isometry from H into K. We further prove that the following statements are equivalent: (a) A is complex-linear or conjugate-linear. (b) For every z ∈ H we have A(iz) ∈ {±iA(z)}. (c) There exists a non-zero point z ∈ H such that A(iz) ∈ {±iA(z)}. (d) There exists a non-zero point z ∈ H such that iA(z) ∈ A(H). The mapping A is neither complex-linear nor conjugate-linear if, and only if, there exists a non-zero x ∈ H such that iA(x) ∉ A(H) (equivalently, for every non-zero x ∈ H, iA(x) ∉ A(H)). Among the consequences, we show that, under the hypothesis above, the mapping A is automatically complex-linear or conjugate-linear if A has dense range, or if H and K are fnite dimensional with dim(K) < 2dim(H).es_ES
dc.description.sponsorshipUniversidad de Granada / CBUAes_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectBirkhof-orthogonalityes_ES
dc.subjectEuclidean orthogonalityes_ES
dc.subjectOrthogonality preserving additive mappingses_ES
dc.titleAn algebraic characterization of linearity for additive maps preserving orthogonalityes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/s43034-025-00454-0
dc.type.hasVersionVoRes_ES


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Atribución 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional