New conditions on some derivatives of the structure Lie operator on a real hypersurface in complex projective space
Identificadores
URI: https://hdl.handle.net/10481/106128Metadatos
Mostrar el registro completo del ítemMateria
$k$th generalized Tanaka-Webster connection Complex projective space Real hypersurface $k$th Cho operator Torsion operator Structure Lie operator Pure tensor field Hybrid tensor field
Fecha
2025-06-29Referencia bibliográfica
Pérez, J.D., Pérez-López, D. New conditions on some derivatives of the structure Lie operator on a real hypersurface in complex projective space. J. Geom. 116, 17 (2025)
Patrocinador
Proyecto MICINN PID 2020-116126GB-100; Proyecto PY20-01391 de la Junta de AndalucíaResumen
Let $M$ be a real hypersurface in complex projective space
equipped with both the Levi-Civita and $k$th generalized Tanaka-Webster
connections, for any nonnull real number $k$. For any operator $B$ on $M$ we
can define two tensor fields of type (1,2) on $M$, $B^{(k)}_F$ and $B^{(k)}_T$, related
to both connections. In the particular case of $B = L$, the structure Lie
operator on $M$, we study purity and hybridness of $L^{(k)}_F$ and $L^{(k)}_T$ with
respect to the structure operator $\phi$.




